

FACULTY OF ENGINEERING AND TECHNOLOGY MASTER

OF SOFTWARE ENGINEERING

Detecting and classifying Software Bugs and

Requirements in Arabic Mobile App Reviews

Author:

Qutaiba Mustafa

Supervisor:

Dr. Mustafa Jarrar

This thesis was submitted in fulfillment of the requirements for the

degree of Master of Science in Software Engineering from the Faculty

of Graduate Studies at Birzeit University, Palestine

Aug 10, 2021

FACULTY OF ENGINEERING AND TECHNOLOGY

MASTER OF SOFTWARE ENGINEERING

Master Thesis

Detecting and classifying Software Bugs and Requirements in Arabic Mobile App Reviews

 اكتشاف وتحليل متطلبات البرمجيات واخطائها في تطبيقات الهواتف الذكية باللعة العربية

Author:

Qutaiba Mustafa (1165486)

Supervisor

Dr. Mustafa Jarrar

Committee

Dr. Mustafa Jarrar

Dr. Radi Jarrar

Dr. Adel Taweel

This thesis was submitted in fulfillment of the requirements for the degree of Master of

Science in Software Engineering from the Faculty of Graduate Studies at Birzeit

University, Palestine

Aug 10, 2021

Approved by the thesis committee:

Dr. Mustafa Jarrar, Birzeit University

Dr. Radi Jarrar, Birzeit University

Dr. Adel Taweel, Birzeit University

Date approved:

 i

Declaration of Authorship

I, Qutaiba Mustafa, declare that this thesis titled "Detecting and classifying Software

Bugs and Requirements in Arabic Mobile app Reviews" and the work presented in it

are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master's

degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all primary sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

 ii

Abstract

Collecting software requirements typically involve users through interviews,

focus groups, and workshops. Recently, software operators started to collect

software requirements, users' feedback, and bug reports from reviews and feedback

systems. However, The users usually do not pay attention to review applications

after downloading them, and regular users may not know how to report bugs to the

software operator, and they might write many useless reviews.

Application distributed systems (known as App stores) allows users to submit

their reviews on the app they downloaded in several forms: score rating, like or

dislike, and text reviews. Recent studies show that the text reviews could include

informative information for the app developers, such as potential software bugs,

user requirements, sentiments about the application, or some ideas for

improvements.

In this thesis, I propose an automatic method to analyze and classify user text

reviews into five main classes: Software bugs, Software users' requirements,

Nonfunctional software requirements, not clear (which includes all the reviews that

I think it is informative for the app stockholders) and not relevant. I built a corpus

of about 10k Arabic reviews collected from 5 different applications and classified

them into 33 classes. Then, I fine-tuned an Arabic pre-trained BERT model (state-

of-the-art Deep learning architecture for NLP) using the corpus and conducted three

experiments on three different versions of the dataset where two versions were

generated by grouping the original 33 classes into five classes and three classes.

The model achieved 99%, 94%, 95% accuracy in the three different experiments.

 iii

 ملخص

يت ما عادة مجيات البر متطلبات التطبيقات إن ضمجمع هذه مستخدمي اك
تغذيتهم شر لأخذ

يتم . قديما، كانالراجعة ليتم تعديل وتطوير هذه التطبيقات بما يتناسب مع احتياجات مستخدميها

ن الرا ن ء جرا إجعة من خلال جمع تغذية المستخدمي و من خلال عقد حلقات أمقابلات مع المستخدمي

النمو ومع . وتفكب ال الكبب نقاش الهواتف تطبيقات تطوير ي
وازدياد فن هذه أذكية مستخدمي عداد

احتياجات لجمع التقليدية الطرق استخدام الصعب من أصبح فقد هائل، بشكل التطبيقات

ن و لى استخدام أنظمة إهذه التطبيقات مطورو ، فقد توجه بالحسبان الراجعة خذ تغذيتهم أ المستخدمي

الراجعة جمع ي التغذية
فن الكبب العدد ومع ، ن المستخدمي ن أ من المستخدمي لغاتهم عداد وتنوع

التطبيقات إف ولهجاتهم مطوري على الصعب من الأ نه وتحليل تغذية مراجعة من ة الكبب عداد

ن الراجعة من خلا . نظمةلأ ال هذه المستخدمي

ن الراجعة لتطبيقات الهواتف أشهر أحد متاجر التطبيقات تعد أنظمة جمع تغذية المستخدمي

التطبيقات من خلال هذه المتاجر تقديم تغذيتهم الرجعة لمطوري مستخدمو الذكية، حيث يستطيع

ن ال عجابهم بهذا إبداء إشكال منها: تقييم التطبيق بعدد من النجوم، أخرين بعدة التطبيق والمستخدمي

عدمه أالتطبيق بلغتهم أو نص شكل على الراجعة تغذيتهم خلال كتابة من بعض وقد . و وجدت

ن النصية على متاجر التطبيقات قد تحتوي علىأالدراسات الحديثة العديد من ن تغذية المستخدمي

لى إن من خلال هذه النصوص و التطبيقات، فقد يشب المستخدم المعلومات المفيدة لمطوري هذه

ي التطبيق أ
احات و أخطاء فن لتطوير التطبيق. و غب وظيفية أوظيفية فكار أو اقبر

 ، العلمي البحث ي هذا
تقنيات أوفن استخدام م ن العصبونية عبر الشبكات وأنظمة الصناعي الذكاء

ن الراجعة النصية المكتوبة باللغة لبناء أداة تقوم بتحليل الأ المدربة عداد الهائلة من تغذية المستخدمي

بشكل وتصنيفها آالعربية ، إلىي ن المستخدمي متطلبات مجية، البر الأخطاء رئيسة: فئات خمس لى

ن ي لا تحتوي الب غمتطلبات المستخدمي
ي معلومات مفيدة، النصوص أوظيفية، النصوص العامة التر

ي قد تحتوي معلومات مفيدة
ن لفهمها. ،التر ولكنها غب واضحة وتحتاج الى التواصل مع المستخدمي

ة الاف تغذية راجعة بجمع مدونة نصية تح ت لقد قم تطبيقات مختلفة ٥من توي على حوالىي عشر

ت للتعلم العميق بضبطبعد ذلك تفئة محددة. وقم ٣٣لى إبتصنيف هذه النصوص توقم نظام بب

تجارب مختلفة على ٣قمت بإجراء لقد لكي يستطيع فهم وتصنيف التغذيات الراجعة بطريقة آلية.

ي التجربة الثانية فقد قمت ٣٣حيث ان التجربة الأولى كانت باستخدام ال النصيةالمدونة
فئة، اما فن

ي التجربة الثالثة، ٣الى و فئات محددة، ٥بتصنيف المدونة النصية الى
بذلك توحصلفئات أخرى فن

ي ٩٥٪ و٩٤٪ و٩٩دقة وصلت الى على
 رب. ثلاث تجاال٪ فن

 iv

Acknowledgments

First and foremost, I am deeply grateful to my parents, brothers, and sisters for

their unlimited support and courage at every stage of my life.

I want to extend my sincere thanks to my supervisor Dr. Mustafa Jarrar for his

insightful guidance, comments, suggestions, and patience at every stage of this

research. I would like to also thank Dr. Mohamad Khalilia for his comments,

suggestions, and feedback in Fine-tuning BERT.

Special thanks to all the teaching crew of the Software Engineering master

program at Birzeit University for their continuous efforts and support. Furthermore,

my appreciation goes to my friends and colleagues at both university and work who

supported me at all times.

 v

Table of Contents

Declaration of Authorship .. i

Abstract ... ii

 iii ... ملخص

Acknowledgments .. iv

List of Tables ... ix

List of Equations... x

List of Abbreviations ... xi

Chapter 1 ... 1

Introduction ... 1

1.1 Introduction and Motivation ... 2

1.2 Research objectives and Problem statement ... 4

1.3 Research Overview ... 5

1.4 Research Activities .. 6

Chapter 2 ... 8

Background ... 8

2.1 App distribution platform .. 9

2.2 Software requirements and bugs ... 9

2.2.1 User requirements: ... 11

2.2.2 Nonfunctional requirements: .. 11

2.2.3 Software bugs:... 12

2.3 Neural network: .. 12

2.3.1 BERT ... 16

 vi

2.4 Logistics regression: ... 19

2.5 Warmup steps:... 21

2.6 Learning rate: ... 21

2.7 Early stopping: .. 22

2.8 AdamW: ... 23

2.9 Sigmoid function: .. 24

2.10 Colab:.. 25

Chapter 3 ... 26

Related Work ... 26

3.1 App platform reviews analysis .. 27

3.2 Arabic language classification and analysis .. 30

3.3 BERT and AraBERT.. 32

Chapter 4 ... 35

Data collection and analysis ... 35

4.1 Data collection .. 36

4.2 Data manual classification and categorization .. 37

Chapter 5 ... 46

Research Methodology And Experimental Setup .. 46

5.1 Environment setup... 47

5.2 AraBERT ... 48

5.3 Used tools .. 50

5.4 Code explanation .. 54

Chapter 6 ... 58

Experiments Results and Analysis ... 58

6.1 Hyperparameter values ... 59

6.2 Datasets and text preprocessing and Tokenization... 63

6.2.1 Splitting dataset and solve the unbalanced class issue ... 63

6.2.2 Text preprocessing and tokenization... 66

6.3 Model training: ... 68

6.4 Experiment I result .. 71

6.4.1 AUROC per class .. 71

 vii

6.4.2 Train vs validation loss ... 74

6.4.3 Prediction .. 76

6.4.4 Experiment result .. 76

6.5 Experiment II result .. 79

6.5.1 AUROC per class .. 79

6.5.2 Train vs validation loss ... 80

6.5.3 Prediction .. 82

6.5.4 Experiment result .. 82

6.6 Experiment III result ... 83

6.6.1 AUROC per class .. 83

6.6.2 Train vs validation loss ... 85

6.6.3 Prediction .. 86

6.6.4 Experiment Results .. 86

Chapter 7 ... 88

Conclusion ... 88

7.1 Conclusions ... 89

7.2 Future work ... 90

Appendix A ... 91

 Dataset: .. 91

 Colab Experiments: ... 91

References ... 92

 References ………………………………………………….………………………………. 92

 viii

List of Figures

Figure 2. 1: Neural Network position among other sciences. 13
Figure 2. 2: NNs simple example. ... 15
Figure 2. 3: Explain Epocs, batches, and iterations. .. 15
Figure 2. 4: BERT Masked LM (MLM). ... 18
Figure 2. 6: Logistics regressions Linear classifier. .. 20
Figure 2. 7: Explain the effect of high/low learning rate. 22
Figure 2. 8: Explain the concept of Early stopping. .. 23
Figure 2. 9: The difference between Adam and AdamW. 24

Figure 4. 1: Categorizing the original classes into two other different versions of

classification. ... 45
Figure 6. 1: The number of tokens vs review count. ... 60
Figure 6. 2: Warmup and learning rate graph. ... 62
Figure 6. 3: The reviews distribution in the train dataset of Exp. I. 64
Figure 6. 4: The reviews distribution in the train dataset of Exp. II. 64
Figure 6. 5: The reviews distribution in the train dataset of Exp. III..................... 64
Figure 6. 6: The number of Epoc against the number of steps. 69
Figure 6. 7: An example of a perfect AUROC curve. ... 71
Figure 6. 8: An example of a 0.7 AUROC curve. ... 72
Figure 6. 9: Exp. I, the not relevant class AUROC curve. 74
Figure 6. 10: Exp. I, training loss curve... 75
Figure 6. 11: Exp. I, validation loss curve. .. 75
Figure 6. 13: Exp. II, AUROC curve for the Users requirements class................. 79
Figure 6. 14: Exp. II, AUROC curve for the Bugs class. 79
Figure 6. 15: Exp. II, AUROC curve for the non-functional requirements class. . 80
Figure 6. 16: Exp. II, AUROC curve for the not clear class. 80
Figure 6. 17: Exp. II, AUROC curve for the not relevant class. 80
Figure 6. 18: Exp. II, the training loss curve. .. 81
Figure 6. 19: Exp. II, the validation loss curve. ... 81
Figure 6. 21: Exp. III, AUROC curve for the informative class. 84
Figure 6. 22: Exp. III, AUROC curve for the not clear class. 84
Figure 6. 23: Exp. III, AUROC curve for the not relevant class. 84
Figure 6. 24: Exp. III, the training loss curve. ... 85
Figure 6. 25: Exp. III, the validation loss curve. ... 85

/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409351
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409352
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409353
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409354
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409355
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409357
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409358
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409362
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409363
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409364
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409365
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409366
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409369
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409370
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409371
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409372
/Users/qutaibamustafa/Desktop/Qutaiba_Thesis/Qutaiba_thesis_word.docx#_Toc84409373

 ix

List of Tables

Table 4. 1: The list of Arabic applications used to create the dataset. 37
Table 4. 2: The original 33 classes with their description and example on each

class. ... 44

Table 6. 1: The hyperparameters values used in all experiments. 63
Table 6. 2: Train, test and validate datasets. .. 63
Table 6. 3: Train, test and validation datasets after resampling. 66
Table 6. 4: Example of AraBERT pre-processor and tokenizer. 68
Table 6. 5: Validation loss per Epoc for the three experiments. 70
Table 6. 6: Test and validation loss for the three experiments. 70
Table 6. 7: AUROC values per class in Exp. I. ... 73
Table 6. 8: Train vs Validation loss in Exp I. .. 74
Table 6. 9: Model predications in Exp I. ... 76
Table 6. 10: Results per class in Exp I. .. 78
Table 6. 11: Final results in Exp I. ... 78
Table 6. 12: AUROC values per class in Exp. II. .. 79
Table 6. 13: Train vs Validation loss in Exp II. ... 81
Table 6. 14: Model predications in Exp II. .. 82
Table 6. 15: Results per class in Exp II. .. 83
Table 6. 16: Final results in Exp II. ... 83
Table 6. 17: AUROC values per class in Exp. III. ... 84
Table 6. 18: Train vs Validation loss in Exp III. ... 85
Table 6. 19: Model predications in Exp III. ... 86
Table 6. 20: Results per class in Exp III. ... 87
Table 6. 21: Final results in Exp III. .. 87

 x

List of Equations

Equation 2. 1: Sigmoid Formula. ... 24

 xi

List of Abbreviations

BERT: Bidirectional Encoder Representations from Transformers.

NLP: Natural Language Processing.

MLM: Masked Language Modeling.

AUROC: Area Under the Receiver Operating Characteristic curve.

API: Application Programming Interface.

iOS: iPhone Operating System.

AI: Artificial Intelligence.

ML: Machine Learning.

GPU: Graphics Processing Unit.

CPU: Central Processing Unit.

TPU: Tensor Processing Unit.

RAM: Random Access Memory.

SDLC: Software Development Life Cycle.

NSP: Next Sentence Prediction.

NER: Named Entity Recognition.

SVM: Support Vector Machine.

TF-IDF: Term Frequency-Inverse Document Frequency.

LDA: Latent Dirichlet Allocation.

 xii

KNN: K-Nearest Neighbors.

NB: Naïve Bayes.

CUDA: Compute Unified Device Architecture.

OSCAR: Open Super-large Crawled Aggregated corpus.

OSIAN: Open-Source International Arabic News corpus.

TP: True Positive.

TN: True Negative.

FN: False Negative.

FP: False Positive.

1

Chapter 1

Introduction

2

Software reviews are an essential part of the software development life

cycle (SDLC). They help software owners and developers validate the software's

quality and make sure user's needs are fulfilled. They also help in improving the

software and focusing on the most features used by the users. However, in App

Store reviews, several significant difficulties can limit the ability of the software

analysts to analyze the software reviews. First, many reviews are added to the app

stores every day, which requires a large amount of effort to be analyzed. A recent

study found that iOS users submit on average 22 reviews per day per app [1]. Top-

rated apps such as Facebook get more than 4000 reviews per day [2]. Second, the

text reviews vary widely, which makes it challenging to analyze and classify the

reviews.

1.1 Introduction and Motivation

According to App Annie statistical report in 2020 [3], by the end of 2019 and

with over 2.7 billion smartphone users, there were 204 billion downloads for mobile

apps worldwide (grown by 45% since 2016), 120 billion dollars were spent on the

mobile application by the consumer, users spend 3.7 hours in average using mobile

application per day. The statistics also show that the number of applications on the

primary two App stores is over 5 million applications (2.2 available on the Apple

App Store, and 2.8 available on Google Play Store). The vast increase in the mobile

application industry introduced a high level of competition. Therefore, app review

plays a crucial role in the success of the mobile application by helping the

application stockholders improving the application, understand the user needs and

discover any existing issues that bother the application users.

A group of researchers in 2017 [4] conducted a survey study to describe and

compare the areas of research that have been done on analyzing different aspects of

3

the app stores such as API, Feature, Releases, Security, and mining the reviews in

app stores by searching specific terms in the following search repository: Google

Scholar, Scopus, JSTOR, ACM, IEEE, and arXiv. Their study shows strong growth

in the number of published papers related to the app stores in 2015 compared with

the past few years.

Collecting customer feedback helps the application stockholders improve their

application and provide a better user experience; it also helps increase the user's

retention by valuing the users' opinions and making the application fulfill their

needs. Customer feedback helps the application developers identify their roadmap

and priorities the app requirements to increase customer satisfaction, which also

helps them improve the app marketing by focusing on the features and

improvements requested and needed by the customers.

Analyzing software reviews manually is a complex process [5] due to several

reasons:

• Expensive: users add millions of reviews daily, which requires many

resources to analyze and filter their reviews.

• Time Consuming: many of the reviews do not contain any valuable

information for the software analysts; filtering these reviews might take

much time.

• Languages, dialects, and culture differences: App stores allow the users to

add reviews in any language or dialect. Which makes it harder for the

software stockholders to understand these reviews, which come from

millions of people worldwide in different dialects and cultures.

The Arabic language has an enormous number of users on the internet [6].

Reviews in the Arabic language in App stores are expected to be informative

regarding software requirement engineering [7]. Some of these reviews could

automatically report bugs in large and standard software

4

systems used by Arab users. I chose to work with the Arabic language due to two

factors. First, Arabic language analysis is of growing importance due to its already

large-scale audience. Second, the Arabic language is challenging due to multiple

dialects and diversity, which resulted in fewer tools available currently to analyze,

mine, and classify Arabic texts compared to other languages. The Arabic language

is striking because of its history, the strategic importance of its people, the region

they occupy, and its cultural and literary heritage [8].

This thesis propose an automatic method to analyze and classify Arabic reviews

from 5 applications in 5 different business domains, the applications were selected

from Google Play and App Store based on the high number of Arabic reviews added

to them according to Appbot1 (a tool to analyze app stores reviews). 10K reviews

were collected and will be manually analyzed and annotated with one or more

classes of each review. Then I will apply the proposed automatic method to these

reviews to identify the performance of the automated method against the manual

classification.

1.2 Research objectives and Problem statement

Due to the complexity in the manual analysis of the mobile app's reviews and

the difficulties in analyzing the Arabic language [9] [10] [11], I propose this

automatic method to help the app stakeholders to analyze the Arabic user reviews

on their application in an efficient, accurate, and cost-effective way. The app

owners will see the reviews classified into different classes, which will help them

1 https://appbot.co/

5

understand the user's needs, fix the undiscovered bugs, and improve the application

roadmap to satisfy user's requirements and achieve success.

The main objectives for this research are:

• Identifying how the App Store reviews could be meaningful and useful for

the application Quality Assurance and Requirements engineers by

extracting only the reviews that contain some potential bugs or user needs

and comparing these reviews to the total number of reviews.

• Understands and analyzes users' reviews into classes, which will help the

application owners to improve the application and satisfy the user's needs.

• The currently available tools and research on analyzing and

classifying Arabic text are limited due to the complexity of the language

and the diversity in its dialects. In this research, I will focus on the Arabic

language and dialects and measure the performance of the proposed

automated method.

1.3 Research Overview

The rest of this thesis is divided into the following:

• Background: A review of the theory and tools and behind this thesis, in this

section, I will cover several topics, including Neural networks, some

optimization algorithms used in this thesis, BERT Architecture [12], and

some AI and ML concepts.

• Related Work: This chapter focuses on the other studies related to the fields

I focus on in this thesis; this includes other papers about collecting user's

requirements, analyzing Arabic language, and other papers about Neural

networks in general and BERT models in particular. In this chapter, I also

6

the areas where improvements can be made and discuss the limitations of

these studies.

• Data collection, analysis: This chapter describes and discusses the data

collected in this research regarding methodology, quality, and quantity. All

the manual classification and classes will be described in this section, along

with examples.

• Research Methodology And Experiment Setup: This chapter describes

how this thesis will answer the research question by describing the

experiments I did and link each one to a research question. In addition to

that, this chapter will also describe the experiment setup.

• Experiments Results and Analysis: This chapter presents the results of the

experiment.

• Conclusion and Discussion: In this chapter, I will discuss how the results

from the previous section answered the research question. In addition, I

will discuss threats to validity and discuss the future work and some

recommendations.

1.4 Research Activities

To ensure the diversity in the reviews and user’s requirements, reviews were

collected from different Arabic business domains and different app stores stores

(the stores of the most common mobile operating systems: IOS and Android [13]).

The following activities will also be carried out:

• Annotate the dataset manually and build a corpus of 33 classes.

• Grouping the 33 classes into five main classes (Software bugs, Non-

functional requirements. User’s requirements, not relevant, and not clear –

7

see section 4.2 for more details) and prepare a different version of the

dataset where the classes are the main five groups.

• Grouping the 33 classes into three main classes: Informative reviews

(reviews that can be meaningfully useful for app Quality Assurance and

requirements Engineers to identify potential bugs or user needs),

Uninformative reviews, and not clear – see section 4.2 for more details) and

prepare a different version of the dataset where the classes are the main five

groups. The results of this experiment (see section 6.6) answer the first

research question of whether the Apps reviews can include some helpful

information for the App stockholders or not.

• Setup the experiment and conduct it for the three versions of the dataset (the

main dataset annotated with the 33 corpus, the main dataset annotated with

the 5 grouped classes and the main dataset annotated with the 3 grouped

classes). Each experiment was conducted several times with different

configurations to get the best results.

All the experiments were conducted using CoLab3 (Colaboratory) under the

same circumstances with the exact GPU resource specification and the same RAM

limitation, see section 5.1 for details.

3 https://colab.research.google.com/notebooks/intro.ipynb

8

Chapter 2

Background

9

2.1 App distribution platform

App distributed platforms are the electronic software distributed markets for

several mobile devices like smartphones and tablets [9]. According to App Annie

statistical report in 2020 [3], by the end of 2019 and with over 2.7 billion

smartphone users, there were 204 billion downloads for mobile apps worldwide

(grown by 45% since 2016), 120 billion dollars were spent on mobile applications

by the consumer, users spends 3.7 hours on average using mobile applications per

day. App Annie statistical report also shows that the number of applications on the

primary two App stores is over 5 million applications (2.2 available on the Apple

App Store, and 2.8 available on Google Play Store [3]).

Analyzing the users' reviews and feedback on the apps in the app platforms is a

necessary process to improve the app development and increase user satisfaction

[5]. Some of these reviews could contain informative information for the app

developers. This research focused on classifying the reviews into Users

requirements, Non-functional requirements, and Software bugs to make it easier for

app developers to analyze these reviews and take action.

2.2 Software requirements and bugs

Creating and collecting software requirements is a complex task as it consists

of several processes such as elicitation, analysis, specification, validation, and

management. It is one of the primary and vital stages in any software development

10

process where high-quality and precise requirements help mitigating the financial

risks and keeps the project on the specified road map [2].

Software requirements are usually divided into three types:

• Business Requirements: This includes the high-level goals and

objectives of the software [14].

• Users’ requirements: This describes what the user needs the software to

do, user requirements are usually collected from the users, or it comes

in a specific user requirements document where the user of the software

signs this document [15].

• System requirements: This describes the specifications of the software

that must meet both business and user requirements. It can be functional

or nonfunctional [15] [16]:

o Functional: which describes how the software must be

functioning and the features needed to achieve the goal of the

software and satisfy the user's needs.

o Nonfunctional: which describes the quality attributes of the

system.

In this research, I collected the data from the user reviews from 2 different

public app platforms (Google play and App Store). As I was not aware of the

software features in detail and the development road map, I will be focusing on two

types of requirements (user requirements and Non-functional requirements) as these

are the common and relevant types of requirements one can find in app stores

reviews [17] [18].

11

2.2.1 User requirements:

User requirement is one of the keys in human-centered design as it describes

the basis for a good design and its evaluation [19]. User requirements specification

is typically collected and documented during the validation process of the software

[20]. However, it is crucial for app developers to align and validate the initial user

requirements with the users' feedback they get from the actual system users.

Collecting users' feedback and transferring them to requirements helps to improve

product development, marketing, and operation [21].

2.2.2 Nonfunctional requirements:

Nonfunctional requirements (NFRs) define system attributes such as reliability,

security, performance, scalability, maintainability, and usability. They serve as

restrictions or constraints on the design of the system. NFRs are just as critical as

functional requirements as they ensure a good user experience and ease of use

operating the software. It can also help improve users' trust when they feel safe and

secure while using the software [22].

NFRs covers different aspects of the software:

• Operational aspects: such as Security, availability, integrity,

accessibility, usability reliability, safety, efficiency, and reliability.

• Revisional aspects: such as maintainability, flexibility, scalability, and

modifiability.

• Transitional aspects: such as portability, reusability, and installability.

12

2.2.3 Software bugs:

"A software bug is a flaw, failure, error or fault in a computer software or system

that causes it to return unexpected or incorrect results." [23] Software bugs are

usually a result of human errors or mistakes during the development process, they

should be identified and fixed during the testing phase of the SDLC, but sometimes

they can go through the development process and appears to users after deployment.

Software bugs can vary from a slight effect on the user to catastrophic effects in

critical software.

Software bugs that pass through the testing phase are usually hard to detect after

deployment from the app developers [23] as they can happen in particular and

complicated scenarios or can only happen in specific circumstances like different

environments. It is crucial to have a reporting mechanism in the software to allow

the users to report any issues or bugs they face while using the application. It helps

the developers identifying and fixing them according to their priorities and impacts.

2.3 Neural network:

Like humans, artificial intelligence (AI) systems were not born perfect; they

need to learn and adapt by taking in information or data continuously, process it,

and keep it for future use, All AI parts are inspired by the human mind, but Neural

network is the clearest example for that; it was inspired by the billions of neural and

trillions of synapses in the human brain as shown in Figure 2.1, Neural network is

part of the deep learning science [24].

13

Figure 2. 1: Neural Network position among other sciences4.

Neural networks are a collection of connected nodes or units called neurons

where each node can send signals and information to the other node, the signal

transmitted between the nodes the numbers and can move from node to another

forward or backward. Neural network nodes and edges have weights usually used

to adjust the learning process by having thresholds in neurons to identify the

learning rate and improve it. Typically, neurons are packed into layers. The first

layer is called the input layer, which receives the inputs, the last layer in the neural

network is called the output layer, which has the final prediction for the output, and

in between, there are several hidden layers to do the computation.

How it works

To explain how NNs works in a simple example, let us assume I am building a

neural network to differentiate between circle, triangle, and rectangle. The first step

is to split the shape image into pexels and feed them to the input layer. Each node

4 Source: https://serokell.io/blog/ai-ml-dl-difference

14

in the input layer is connected to one or more nodes from the second layer (one of

the hidden layers) through channels where each channel is assigned to a numeric

value called weight, the sum of each channel per node will be sent to the

corresponding node, each node in the second layer has a value called bias. The

summation result from this value with the summation from the channels per node

identifies if a node should be activated or not. Only the active nodes transmit data

to the subsequent layers in a process called Forward Propagation, which eventually

will be sent to the output layer as probabilities.

The neural network also has the output fed to it, the final predictions in the

output layer are compared with the actual value, and in case of any error, the

information will be sent back to the hidden layer, and based on this information, the

weight can be adjusted in what is called Backward Propagation, the same forward,

and backward propagation, each forward and backward propagation called EPOC,

and usually number of Epocs is one of the significant factors to improve the model

quality.

15

Figure 2. 2: NNs simple example.5

NNs are time and resources consuming; sometimes, it is hard to train a neural

network model with low resources because an EPOC is too big to feed to the

computer at once. Batches could solve this issue sometimes by splitting one Epoc

into several smaller batches, where each batch holds a total number of examples in

the train data set (called batch size).

Iteration represents the number of batched are required to complete on Epoc.

Figure 2. 3: Explain Epocs, batches, and iterations.6

5 Source: https://www.youtube.com/watch?v=bfmFfD2RIcg&t=257s
6 Source: https://www.youtube.com/watch?v=K20lVDVjPn4&t=2s

https://www.youtube.com/watch?v=bfmFfD2RIcg&t=257s
https://www.youtube.com/watch?v=K20lVDVjPn4&t=2s

16

There are several applications on the neural network these days, such as:

• Facial recognition: smartphones these days have cameras and apps that

can predict your age. This is an application of a neural network where it

separates the face from the background and then correlating the lines

and spots on the face to predict the age.

• Forecasting: neural network can be trained to understand the patterns

and predict the possibility of a specific event (such as a rise in stock

prices) with high accuracy.

• Music composition: Neural network can also learn patterns in music and

train itself to compose a fresh tune.

2.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) was

published recently in 2018 by researchers from Google AI [25]. It caused a

revolution in machine learning science by presenting a state-of-the-art result in

several NLP tasks, including Questing answering, natural language interface, and

others [25].

The key innovation in BERT is applying Bidirectional training of transforms,

unlike previous efforts which took the text sequence either from right to left, or

from left to right, or combined right-to-left and left-to-right training, the models

present a deeper meaning of the language context and flow compared to the

previous Unidirectional models, BERT also introduces a novel technique called

Masked Language Modeling "MLM" to allow bidirectional training models [12].

17

How BERT works?

As opposed to previous directional models, which reads the sentence from right

to left or left to right, the transformers encoders in BERT reads the entire sequence

of words at once (bidirectional), which allows the model to learn the context of a

word based on what is surrounding the word in all directions.

BERT uses the transformers encoders to replace the words with mase and

embedding them into vectors, which eventually will be processed in a neural

network. The prediction goal could be a challenge for context learning in the

directional model. To overcome this challenge, BERT used two training strategies:

• Masked LM (MLM): 15% of the words in each sentence are replaced

with the token [mask] before feeding them into BERT; BERT tries to

predict the original word depending on the other non-masked word in

the sentence and using the classification layer on top of the encoder,

BERT predicts and assign probabilities to the possible word for the

masked token, where the validation loss on BERT takes only the masked

words and ignore the other non-masked one, which also makes it slower

than the other directional model.

18

Figure 2. 4: BERT Masked LM (MLM).7

• Next sentence prediction (NSP): in the process of training, BERT

receives pairs of sentences as input to learn and predict if the second

sentence in the pair is the subsequent sentence in the original document.

50% of the pairs are in pairs as they are in the original document, and

the other 50 are paired randomly where the model should predict that

they are not subsequent and separate them. To distinguish between

sentences, the model processes the input before starting the training

process by adding a [CLS] token at the beginning of the first sentence

and a [SEP] token at the end of each sentence. To predict if the two

sentences are connected, BERT transfers the CLS tokens' output into a

2*1 shaped vector using a classification layer and then calculates the

probability of the IsNextSequence with SoftMax.

7 Source: https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

19

Fine-tune BERT:

BERT can be used in several language tasks:

• Classification tasks: This can be done similarly to NSP by adding a

classification layer on top of the transformers.

• Question Answering tasks (Q&A): This can be done by training BERT

on two extra vectors that identify the beginning and end of the answer.

• Named Entity Recognition tasks (NER): This can be done by feeding

the output vector of every token into a classification layer that predicts

the entity label.

2.4 Logistics regression:

Linear classifier classifies the data based on a linear combination of input

features by separating data using a line or plane. Linear classifiers can only be

used when the data can be split linearly. Perceptron, logistics regressions, and

SVM are the primary three algorithms in Linear Binary Classifiers.

While perceptions output only a Boolean result on where the input feature

should be, logistics regressions pass the weighted linear combination of the

input feature through a sigmoid function which returns a result between 0 and

20

1; this value indicates where the value should be on the plane. The probability

of classification of points very close to the plane is close to 0.5 [26].

Figure 2. 5: Logistics regressions Linear classifier.8

8 Source: https://sites.google.com/site/machinelearningnotebook2/classification/binary-classification/linear-classifiers

https://sites.google.com/site/machinelearningnotebook2/classification/binary-classification/linear-classifiers

21

2.5 Warmup steps:

In the case of a highly differentiated dataset or unbalanced classes in the

dataset, the model can suffer from early Overfitting. Warmup steps are a way

to reduce the primacy effect of the early training examples by focusing on the

learning rate during these steps and modify it per iteration. Let us say the target

learning rate is p and the warmup period is n, then the first batch iteration uses

1p/n as its learning rate, and the second batch iteration uses 2p/n and so on till

the model hits its nominal rate at iteration n. This means that the first iteration

gets only 1/n of the primacy effect. This does a reasonable job of balancing that

influence.

2.6 Learning rate:

Learning rate is a hyperparameter that controls how much the model should

be changed according to the error after each iteration (when the weights are

changed). It is usually a tiny positive number between 0.0 and 0.1. Choosing

the most suitable learning rate is a challenging and experimental configuration

22

as a low learning rate can cause a very long training process, and a high rate can

cause speedy and unreliable results.

Figure 2. 6: Explain the effect of high/low learning rate.9

2.7 Early stopping:

Early stopping is a concept in machine learning that refers to stop training

the model before it starts suffering from the over-fitting; I can use early stopping

by splitting the dataset into a train, test, and validation dataset and keep an eye

on both test and validation loss after each epoch where the model should be

stopped if the accuracy of validation in decreasing the training accuracy is

increasing (the model is overfitting). Overfitting means the model is working

9 Source: https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-

learning-d0d4059c1c10

https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

23

perfectly on your training set but not on other datasets. The model is closer to

the perfect point when the training loss is close to the validation loss.

Figure 2. 7: Explain the concept of Early stopping.10

2.8 AdamW:

Adam optimizer first introduced in 2014 with a simple and intuitive idea:

why should we use the same learning rate for every parameter while some

parameter needs to move faster and further than others, some studies after Adam

released shown 200% speed in training, but later in 2017 Ilya Loshchilov and

Frank Hutter [27] pointed that the way weight decay is implemented in Adam

is wrong, and proposed a simple solution called AdamW, and provided some

charts to show the improvements in AdamW above Adam along several Epocs.

10 Source: https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html

24

Figure 2. 8: The difference between Adam and AdamW.11

2.9 Sigmoid function:

 Sigmoid is a mathematical function with the characteristics of an S-shaped

or sigmoid curve, and it is a bounded and differentiable function that takes input

values and transforms them into a number between 0 and 1 or -1 and 1 (called

probability). Logistics Regression is one of the most common cases where the

sigmoid function is used where it takes input values and transform them into

probabilities between 0 and 1 according to the formula 2.1.

Equation 2. 1: Sigmoid Formula.

Where x represents the input value.

11 Source: https://www.fast.ai/2018/07/02/adam-weight-decay/

https://www.fast.ai/2018/07/02/adam-weight-decay/

25

2.10 Colab:

Collaboratory, or "Colab" for short 12, is a product from Google that allows

anybody to write and execute Python code through the client's browser. Colab

is very suitable for machine learning, data analysis, research, and education.

Colab presents its copy of the jupyter notebook service, which requires no

installation or setup to use. Colab also provides free access to computation

resources such as CPUs, GPUs, TPUs. Although it provides free access to

resources, it still has limitations, where the resources in Colab are shared

between the users with some limitations per user. Colab also provides a

premium edition for users who are interested in more reliable and better

resources.

12 https://colab.research.google.com/notebooks/intro.ipynb

26

Chapter 3

Related Work

27

In this chapter, a detailed review of the previous related work is presented.

In order to make this section more organized and readable, and since I could not

find any previous work for analyzing Arabic reviews from App platforms using

BERT architecture, this chapter will be divided into three sections to cover the

related work from 3 sides: The first section will present the work related to

analyzing reviews from Google Play and App Store regardless the language of

the reviews or the techniques used to analyze these reviews, the second section

will cover the previous work related to analyzing Arabic regardless the

techniques or the origin of the text being analyzed. The last section of this

chapter will cover the previous work that is related to using the BERT

architecture with more focus on the work that overlaps with the other two

sections (the Arabic language and the app platforms reviews).

3.1 App platform reviews analysis

Several machine learning and natural language processing techniques were

used to classify a text into different classes in literature. For example, Al Kilani,

Tailakh, and Hanani in [5] used four different machine learning algorithms to

classify App stores review into five categories: Bugs, Usability, new features,

performance, and security. They retrieved around 90000 English reviews on ten

different applications from google play. They employed ten software experts to

do the manual classification, and they were able to conduct their experiment on

7500 reviews. For each review, the software experts were asked to assign a class

among the mention five categories and to support their decision with a

confidence level (high, medium, low) in order to train the classifiers on the

28

confidence levels and compare the performance of the systems trained using

classes with high, medium, and low confidence. Naive Bayes Multinomial was

used as their baseline technique which shown the best performance among other

techniques (Naive Bayes, Random Forest, and Support Vector Machine). They

were able to improve the results concerning accuracy metrics by employing

some other features like sentiment analysis. Some NLP techniques (such as n-

grams modeling, TF-IDF features, and noise removal) were also used in the pre-

processing data stages to improve the accuracy.

Similarly, Maalej and Nabil in [28] used several probabilistic techniques to

classify app reviews into four types: bug reports, feature requests, user

experiences, and ratings. They also used some metadata (such as star rating,

tense, and text length) to improve the accuracy of their results. They used String

Matching and Document classification (Bag of words) as the primary classifier

and two NLP techniques: Stop-words removing and lemmatization. Their

model achieved 97% accuracy (comparing with the manual classification) after

employing the metadata in their model.

Moreover, Otoom, Sara, and Maen in [29] achieved an average accuracy of

93.1% using the Support Vector Machine classification algorithm to classify the

newly reported bugs into two classes: corrective and perfective bug reports.

They collected the bug reports data set from three open-source projects and fed

these bugs into their automated classifier after they classified them manually.

They also used some NLP techniques such as Tokenization and stemming steps

to improve the accuracy of their automated tool. Among the three machine

learning techniques they used (Naïve Bayes: average accuracy of 92.9%,

Random Trees: average accuracy of 89.6%, SVM: average accuracy of 93.1%),

SVM was the most accurate technique in their case.

29

Pagano and Maalej conducted a similar empirical study in 2013. They

analyzed over one million reviews from Apple AppStore to study how and when

the users add feedback, inspect the feedback content, and study its impact on

the user’s community. They found that feedback is added chiefly after the new

releases, and they usually contain user experience, bug reports, and feature

requests [30]. Another study was conducted in 2013 to extract new changes in

requirements from users’ comments in third-party applications [31].

In 2014, Guzman and Maalej conducted a study on 7 Apps from Apple

AppStore and Google Play to identify the fine-grained app features by

extracting the user’s sentiment about the identified features and give them a

general score, their automated approach has a precision of 0.59 and recall of

0.51 (compared with manual analysis), and the extracted features in their

approach were coherent and relevant to requirements evolution tasks [32].

Yang and Liang in [33] presented an approach to classify user reviews from

a popular app iBook in the Apple App Store into functional and non-functional

requirements. They used several retrievals and NLP techniques such as TF-IDF

and regular expressions to build their classifier. They also investigated the cost

and returned for the proposed approach, and the results show a relatively stable

recall, precision, and F-measure when selecting an appropriate size of sampled

reviews.

Iacob and Harrison in [34] designed a prototype named MARA (Mobile

App Review Analyzer) to support the process of analyzing a large number of

reviews to extract the functional requests on a mobile application. Using their

model, they were able to show that 23.3% of the reviews submitted on the App

stores are functional feature requests. They analyzed 136,998 reviews using

Linguistic rules and several NLP techniques to extract the feature requests.

30

They used LDA (Latent Dirichlet Allocation) model to assign topics from their

corpus to each request.

Chaochang Chiu in [35] investigated the analysis of the Chinese review in

some android game apps. He extracted 207,048 reviews of 4,268 games and

analyzed them, including different factors like the game type and attributes. He

found a high dependency between the type of the game and the gender of the

user; males and females have differing opinions on game attributes.

3.2 Arabic language classification and analysis

Despite the difficulties in analyzing the Arabic language [36] [37], there are

several kinds of research where Arabic language texts were analyzed and

classified. For example, researchers in [38] build an opinion mining model that

accepts an Arabic social media comment as input and identifies whether that

comment is subjective or objective, positive or negative, and strong or weak.

They built several algorithms to achieve their desired results, such as the

Subjectively algorithm, Strength/Intensity Algorithm, and Polarity Algorithm.

They used 66% of their dataset as training data and 34% as testing data. Finally,

there were able to achieve the following accuracy using different algorithm:

• Subjectively analysis (Naïve Bayes – the most effective technique):

93%.

• Polarity Evaluation (K-NN Classifier – the most effective technique):

90%.

• Intensity Evaluation (Naïve Bayes – the most effective technique):

96.9%.

31

Different dialects are one of the most common difficulties in analyzing and

classifying Arabic text [39]. However, several studies have been published to

remove this difficulty by proposing automated tools and models that use some

NLP techniques such as Lemmatization. For example, Jarrar and a group of

research in [40] [39] presented Curras, an annotated corpus consisting of 55960

tokens for the Arabic Palestinian dialect and rich morphological and semantic

information.

Ashraf, Yasmin, and Anas in [41] introduced a new dataset, and they named

it HARD (Hotels Arabic Reviews Dataset), a large dataset with more than 370K

Arabic reviews from the booking site. In order to examine their dataset, they

have applied six machine learning classifiers to test the polarity and the rating

of the reviews. The SVM and logistics regressions classifiers produced the best

results, ranging from 94 to 97% for polarity and 72 to 75% for rating. They have

also used the constructed lexicon on their dataset and achieved 89% accuracy.

A group of researchers in [42] presented an experiment to categorize Arabic

text automatically. They have selected five main categories from popular Arabic

datasets and generated three different versions of the dataset: stemmed, root-

based stemmed, and light10. They applied four machine learning classifiers of

the three datasets, SVM, NB, Decision Tree, and KNN. They got the best result

on the light10 dataset using the SVM classifier, which achieved 98.4% accuracy

using the RapidMiner tool, and 98% using the Weka tool.

Asma, Leila, and Abdesselam in [7] collected a dataset of 50 reviews from

the Google Play Store. They have collected reviews only in French, Arabic, and

Algerian dialects and analyzed these reviews to train a model that can predict

sentiment analysis using two approaches, machine learning-based and Lexicon-

based based. They achieved 80% using the Lexicon-based approach and 72%

32

using the machine learning approach, where the SVM classifier achieved the

best results.

Sufyan, Omar, Bilal, and Khaled in [43] proposed an Arabic Aspect-Based

Sentiment Analysis (ABSA) that combines both lexicon with rule-based models

to classify the Arabic reviews from the governmental mobile apps after

classifying them manually and five a sentiment score for each review. Their

experiment approved that applying rules setting showed some improvements in

both accuracy and f1 score, where the accuracy increased by 6% and the f1 score

showed 17% improvement.

A recent study by Ahlam and Maha in [44] showed that many Arabic Apps

in Google play are miscategorized. They refer to this for two reasons: the

misunderstanding of Google play categorization schema or the lack of

categories available for Arabic Apps. After collecting 13279 Arabic apps in

Google play from different domains like Education, Family, Books, Lifestyle

and classifying those apps using the LDA algorithm, they came up with this

statement and predicted each app's category.

3.3 BERT and AraBERT

BERT [12] is a paper published in 2018 by researchers at Google AI, and it

caused a storm in the machine learning community; it presented some

extortionary results in several NLP tasks like Question Answering, Entity

Recognition, and Natural Language Inference and others.

The key innovation in BERT is applying bidirectional training of

transforms, unlike previous efforts which took the text sequence either from

33

right to left, or from left to right, or combined right-to-left and left-to-right

training, the models present a deeper meaning of the language context and flow

compared to the previous single directional models, BERT also introduces a

novel technique called Masked LM "MLM" to allow bidirectional training

models [12]. AraBERT appeared for the first time in 2020; it is a pre-trained

language model based on Google’s BERT architecture and uses the same

BERT-Base config.

Till the moment of writing this research, the last AraBERT version is 2.

AraBERT version 2 was trained on a large dataset (77 GB) with around 8.6

billion words and 200 million sentences. AraBERT v2 comes with two different

pre-segmented models: AraBERTv0.2-base and AraBERTv0.2-large [45].

AraBERT will be used in this research, and previous work on AraBERT will be

focused on in this section.

Recently, a group of researchers in [46] proposed a model to detect Hate

Speech and offensive language. They have used different versions of the

AraBERT model and fine-tune it on a total of 10K tweets. They labeled the data

with HS and NOT_HS (HS stands for Hate Speech) and OFF and NOT_OFF

(OFF stands for offensive language), the divided the dataset into training (70%),

testing (30%) and validation (10%), and fine-tuned the model in two

approaches: multi-labels and multi-tasks, they have found that the results of the

multi-task AraBERT model outperformed the multi-label mode where the

multi-task model showed 90.15% Macro-F1 for the offensive language and

83.41% for the Hate speech. Meanwhile, the best version of the multi-label

model showed 89.55% Macro-F1 for the offensive language and 80.81% for the

Hate speech. One of the main challenges they have faced is the imbalanced

classes in the training data where they have 6489 tweets labeled as NOT HS and

only 350 labeled as HS, they tried to solve this imbalance in different methods

34

like using the weight loss function or by resampling the data, but none of these

methods showed any improvement in their experiment.

Dalya and Malak in [47] used AraBERT to build that detects sarcasm

tweets, and they named it sarcasmDet. They have used the prelabeled Shared

Task on Sarcasm and Sentiment Detection in Arabic from WANLP 2021 [48]

as their dataset and used different versions of the AraBERT model with one

single Boolean class identifies in the tweet is sarcastic or not, and they have

achieved 0.5989 F1-score for the large version of AraBERT and 0.3993 for the

base version.

An interesting paper was published recently by Ahmad, Nada, and Ammar

in [49], where they propose an effective to fight the COVID-19 Infodemic

tweets. They used the NLP4IF 2021 [50] dataset and classified its 2556 tweets

manually into seven labels indicates if the tweet has false information, verifiable

claims, harmful, needs verification, harmful to society, requires governmental

attention, or has some interesting information for the general public, their model

achieved 67.7 accuracy using the base version of AraBERT.

Anshul in [51] proposed an approach to identify Arabic dialects in Nuanced

Arabic Tweets Using Farasa Segmentation and AraBERT, he used a prelabeled

training dataset that contains a total of 21000 tweets, validation, and test dataset

contains 5000 tweets, he has applied both large and base AraBERT and

achieved 0.433 accuracy as the best result.

Abdullah, Eric, and Abdulrahman in [52] used a prelabeled dataset called

QurSim to binary classify pairs of verses provided by the dataset to check if the

pairs are semantically related or not. They have used different versions of

AraBERT, where the best result they achieved from AraBERTv0.2 with 92%

accuracy.

35

Chapter 4

Data collection and analysis

36

This chapter describes how I got the reviews from the app platforms and

how they are classified manually into three different. It also describes the corpus

built and how the classes are categorized into users’ requirements, bugs, and

non-functional requirements.

4.1 Data collection

Up to my knowledge, there are no available annotated/classified datasets for

the Arabic reviews of applications from google play and the Apple App Store.

I also could not use any available APIs to fetch the reviews from Google Play

or Apple App Store. However, I was able to modify and use some of the open-

source crawling tools to collect a dataset from both Google Play and the App

Store. This process took much time between modifying the tools to satisfy the

needs and doing some workaround to prevent browser crashing or hanging

through the crawling process due to the massive number of reviews in some

applications. However, I was able to modify this tool with techniques to fetch a

large number of reviews, including: (AppId, review author, review date, score

rating, review text ...etc.).

In this research, I focused only on the Arabic reviews, so I picked five

applications from the most common application in the Arabic region from

various categories. I collected over 90000 reviews, but I reduced that number to

10000 reviews (the most recent reviews from each app) to do the manual

classification. I noticed that the number of reviews on Google play is much

larger than the one in Apple App Store.

37

App name Domain Reviews collected

App Store reviews Google play reviews

Altibbi Health 132 4000

Careem Car booking 800 1000

Shahed Video streaming 621 1000

Waze Navigation and live traffic 447 1000

Yamsafer Hotels and flight booking 0 1000

Totals: 2000 8000

10000

Table 4. 1: The list of Arabic applications used to create the dataset.

4.2 Data manual classification and categorization

I13 started the manual classification process by reading each review and

assign it to one of the classes if its suites any of the classes in the corpus; if not, I

extend the corpus with a new class and assign the review to it14. The criteria I used

to classify the reviews and build the corpus are depending on the repeatability of

issues and requirements in app’s reviews where I added a new class for an issue or

requirement only if it’s repeated by 10 or more users in different reviews:

• Repeated meaningful issue: this means that 10 or more people reported

it as a potential meaningful issue or bug to a software tester.

13 A master student in software engineering with over 6 years of experience as a software engineer.
14 2% of the corpus was discussed in a face-to-face with an external expert. The aim of this

meeting was not to measure agreement or disagreement on the classification but to have an

external opinion about understanding reviews which I took into account while classifying the rest

of the corpus.

38

• Repeated meaningful requirements: it’s a user need that frequently

repeated (in 10 or more reviews) and identified meaningfully useful to

a software tester and/or requirement engineer, by the expert annotator.

Although these criteria were practical in classifying the corpus, but there

might be some reviews that are vague. By the end of this process, I was able to

classify around 10K reviews and build the corpus with 33 classes that were

found arbitrarily as they are patterns in the reviews. Table 4.2 shows the classes,

description, example, and the count for each class in the dataset.

Class Description Example Count

Not relevant • Describes all the comments that did not

have any informative information for the

develops.

• It’s not a repeated meaningful issue or

requirement that need to be resolved.

الله يعطيكم العافية خدمة والله مميزة ومشكور للكبتن

 احمد الصبحي الله يعطي العافية ويحفظة

7138

Issues appeared after

updates

• Describe all the bugs specifically after

updates, and also some feature removed

with the new updates.

• Repeated meaningful potential issues

that needs to be resolved by app testers.

 xr 120 التحديث الأخير لا يعمل على اجهزة ايفون

Missing business features

(user suggestions)

• Describes all the domain feature that are

request by users.

• Repeated meaningful requirement that

needs to be added to the app according to

user’s needs.

ولكن لو يضيفون خاصية عداد القسمه البرنامج ممتاز

 طوال الرحلة يكون ممتاز

116

Annoying ads • Describes the user requests to remove or

reduce the number of ads on the app.

• Repeated meaningful potential issues

that needs to be resolved by app testers.

 ٤٥حرفيا بدون مبالغه اذا حاب تتابع حلقه مدتها ساعه

 دقيقه بالقليل اعلانات

143

39

UI/UX issues/suggestions • Describes all the issues with the app user

interface or user experience, or some

user suggestions.

• Repeated meaningful potential

issues/requirements related to UI/UX

that need to be resolved/Added.

تطبيق بواجهة ومميزات فقيرة ، صعوبة الوصول الى

 الرحلات السابقة

17

Notifications • Describes all the issues related to app

notification or some feature requested by

the user related to notifications.

• Repeated meaningful potential issues

that need to be resolved by app testers.

دائما يظهر انه يوجد اشعارات ولكن عند الدخول

عارات للتطبيق لايوجد اش

13

Availability • Describes all the issues related to app

availability.

• Repeated meaningful potential issues

regarding the app availability that needs

to be resolved.

السلام عليكم مشرفو التطبيق لدي مشكلة هو انني لا

استطيع ان اسأل لانني لست من دول الخليج انا من

شمال افريقيا والتطبيق يلزمه رقم مبايل من بلدان

المحددة في التطبيق اريد حل لهذه المشكلة والسلام

 عليكم

195

Performance • Describes all the issues related to app

performance.

• Repeated meaningful potential issues

regarding the app performance that needs

to be resolved.

 137 برنامج جميل لكنه بطيئ بعض الشيئ

Work offline • Describes all the reviews, suggestions, or

complaints about app functionality in

offline mode.

• Repeated meaningful requirement that

needs to be added to the app according to

user’s needs.

 37 ناقصه تنزيل الخرائط بدون نت

Bugs related to the app

features

• Describes all issues user faced in domain

features.

• Repeated meaningful potential issues

regarding the app functional features that

needs to be resolved.

 7سيء اطلب فنادق في مكه يطلعلي فنادق القاهره

 كيلومتر من مكه وجع اعتمر بالقاهره ؟ وش ذا

180

40

Compatibility • Describes all the bugs and user requests

for the app compatibility with other third

parties.

• Repeated meaningful potential

issues/requirements related to app

compatibility that need to be

resolved/Added.

 Apple TV 113 اتمنى الدعم على

Issues related to the app

languages

• Describes all the reviews where users

complaining about issues in languages,

or request supporting new language.

• Repeated meaningful potential issues

regarding the app supported languages

that needs to be resolved.

يحتاج الى تحسين كبير للواجهة العربية لانها تحتوي

لى كلمات انجليزية كثيرة وانعكاس للواجهة ع

صوصا الانجليزية ويحتاج الى توضيح الازرار اكثر خ

 عند الغاء الطلب

55

Political and racism reviews • Describes all reviews related to political

and racism.

• Repeated meaningful comments from

users about Political and racism issues.

تطبيق عنصري يتماشى مع سياسات الاحتلال

 ..الصهيوني

147

Suddenly crash • Describes all reviews mentioning the

App stopped or crashed.

• Repeated meaningful potential issues

regarding the app crashing issue that

needs to be resolved.

ممكن تلقولي حل كل ما ادخل تطبيق شاهد يقولي تم

ايش المشكلة اطلب منكم توقيف تطبيق شاهد لييييش

 تحلون هذا المشكلة بليييز بليييز بلييييز بليييز

125

Privacy • Describes all reviews related to user’s

privacy.

• Repeated meaningful potential issues

regarding the app privacy that needs to

be resolved.

التطبيق يقوم بنسخ ما اكتبه جرب انك تنسخ كلام

وتضع لصق التطبيق سينسخ النص الذي نسخته انا.

 تطبيق سيء ينتهك الخصوصية

16

Usability • Describes all reviews related to app ease

of use.

• Repeated meaningful potential

issues/requirements regarding the app

 التطبيق صععععععععب وأحسه حوسة مرة غير مرتب

الحين طالبة طلب بس ضيعت وينه ماعرفت شلون

 ألقاه

46

41

Usability that needs to be

resolved/added.

Lack of instructions and

guidance

• Describes all reviews related to lack of

information or guidance.

• Repeated meaningful potential

issues/requirements regarding the app

instructions that needs to be

resolved/added.

حملت التطبيق لكن كيف الاشتراك والبدء بسؤال

الطبيب وهل هو مجان وماهو الكوبون اللي يريد مني

 ادخاله

171

Internet connection and

coverage issues

• Describes all reviews related app

connection to internet while the phone is

connected.

• Repeated meaningful potential issues

regarding the app connectivity that needs

to be resolved.

الان البرنامج لا يعمل)بقول ليك غير متصل

 بالانترنت بالر غم من توفر الشبكة بالجهاز

69

Business limitations • Describes all reviews related to app

feature limitations.

• Repeated meaningful requirements

regarding the app limitations that needs

to be added.

ياريت زيادة عدد الحروف في گتابة الشگوي .. غير

 گده تطبيق ممتاز

10

Human and technical

support issues

• Describes all reviews related to human’s

agent and technical support.

• Repeated meaningful potential issues

regarding the app support issues that

needs to be resolved.

مش برتاح مع كريم اسلوب غير محترم من الشركة و

موظفين خدمة العملاء و شكله ان العملاء كمان هنقول

 مفيش كريم افضل

273

High cost • Describes all reviews related to user

complaining about app cost.

• Repeated meaningful potential

issues/requirements regarding the app

cost that needs to be resolved/added.

الاسعار تكلفته غالية ولا تقولي شركات اتصال ودولي

اصلا كثير من اتصالات النت مجانا بس الاطباء الي

يبيعوا معلومات سوو خير وانفعوا العالم مع الاسف انا

كنت استعمل البرنامج وبعد ميشتغل مثل قبل ولا

 يجاوب الا بفلوس ومسحته

193

Subscription • Describes all reviews related to

subscription issues.

لي انو اشتراكي خلص وهو لسا ما اول شي ارسل

 خلص وسويت اشتراك ثاني من اسبوع وما تفعل

208

42

• Repeated meaningful potential

issues/requirements regarding the app

subscription that needs to be

resolved/added.

وليا اسبوع اتواصل على الواتس والايميل لكن يقولون

 !!!! انه مفعل وهوا ما يشتغل اسوا خدمة عملاء

Payment issues & voucher • Describes all reviews related to Payment

issues.

• Repeated meaningful potential

issues/requirements regarding the app

payment and voucher issues that needs to

be resolved/added.

ريال في المشوار 7اذا لغيت المشوار ليش تنزل لي

 الثاني

267

App content issues • Describes all reviews where users are

complaining about app content.

• Repeated meaningful potential issues

regarding the app content issues that

needs to be resolved.

جيد ولكن عرض المسلسلات او البرامج الوثائقية يتم

من اشتركنا عرضها بعد عرضها ع التلفزيون .. نحن

 بشاهد نريد عروض حصريه قبل العرض ع التلفاز

105

App size • Describes all reviews related to app size.

• Repeated meaningful potential issues

regarding the app size issues that needs

to be resolved.

 11 التطبيق صار ثقيل ولايفتح ويعلق

Login, registration,

password reset, and

activation issues

• Describes all reviews related to users

Authentication.

• Repeated meaningful potential issues

regarding the app authentication panels

issues that needs to be resolved.

فبه مشكلة عدم امكانية اعادة الرقم السري ان اخطأت

 في الايميل

138

Download & installation

issues

• Describes all the issues users are facing

in downloading and installing the app.

• Repeated meaningful potential issues

regarding the app download and

installation issues that needs to be

resolved.

ويوقف 90مش رضي يتحمل يوصل 10

43

No Free edition • Describes all the reviews where users are

complaining about no fermium version

of the app.

• Repeated meaningful potential

issues/requirements regarding the app

freemium edition that needs to be

resolved/added.

ار كان الحلو فيه انه مجاناً وجوده عاليه بس الحين ص

 بافلوس يعني نظام نتفلكس

52

Communication issues • Describes all the reviews where users are

complaining communication issues.

• Repeated meaningful potential issues

regarding communication issues that

needs to be resolved.

تواصل بين الشركة لا يوجد رقم أو طريقة -١

 .والزبائن

 .لا يوفر كريم رقم مجاني لحجز التكسي -٢

232

Supportability • Describes all the reviews related to app

supportability.

• Repeated meaningful potential

issues/requirements regarding the app

supportability that needs to be

resolved/added.

 stc ليش في السعوديه ما يشغل مع مستخدمين شركه

حاولت كثير السداد عبر رقمي من اس تي سي لكنه

 يرفض التعرف على الرقم

42

High internet consumption • Describes all the reviews related to the

app high internet consumption.

• Repeated meaningful potential issues

regarding the app internet consumption

issues that needs to be resolved.

قيقا راحت في يومين ٤٠شفط ابو النت 17

Security • Describes all the reviews related to the

app security.

• Repeated meaningful potential

issues/requirements regarding the app

security that needs to be resolved/added.

يوجد ثغرات في أمان التطبيق حيث يمكن للكابتين

التلاعب و إلغاء الرحلة دون معرفه الراكب و إرسال

سياره اخرى دون إعلام الراكب بما حدث حيث يتم

ل الاتصال به من الشخص المزيف المرسل من قب

كابتن كريم و بعد الركوب و اثناء السير نتعرض

للتهديد و الابتزاز و تحصيل مبالغ ماليه رهيبة و سوف

تدفع تحت التهديد و إنهاء الموقف و قد تكون الخساره

اكثر من ذلك فقد تتعرض للخطف و الموت و تجاره

 الأعضاء

11

44

Not clear • Describes all the reviews where the users

were complaining about some issues, but

it was not clearly mentioned

• It’s a repeated issue or requirement,

however, what’s need to be resolved is

not clear.

 دائما اخطاء في الطلب سيء جدا جدا جدا

هبي لديهممع العلم انا عميل ذ

142

Table 4. 2: The original 33 classes with their description and example on each class.

After the manual classification for the 33 classes, I found that some of the

classes do not have many reviews to support them during the training process,

so I generated two different datasets from the original one with different

labeling. The first one is by categorizing the 33 classes into five parent classes:

• Software bugs: 1370 reviews.

• Non-functional requirements: 1725 reviews.

• Users Requirement: 845 reviews.

• Not Relevant: 7138 reviews.

• Not clear: 142 reviews.

To address all the research objectives mentioned in section 1.2, I have

created another third dataset to find how informative Google Play and App Store

reviews can be. The third dataset had only three classes:

• Informative reviews: 2720 reviews.

• Uninformative reviews: 7138 reviews.

• Not clear: 142 reviews.

Figure 4.1 shows all the classes, and how I generated the second and third

data set from the first dataset classes where the green nodes represent the classes

of the third dataset, the blue ones represent the classes in the second dataset, and

the gray nodes represent the original classes in the first dataset.

45

Figure 4. 1: Categorizing the original classes into two other different versions of classification.

46

Chapter 5

Research Methodology And

Experimental Setup

47

In order to fulfill the objectives of this research which were introduced in

the first chapter, Reviews in Arabic language were collected from Google play

and App store and annotated with the 33 classes mentioned earlier. In this

chapter I will explain how the data were pre-processed and will show the tools

used in the experiments.

5.1 Environment setup

Due to the massive number of recourses and computation power need to

fine-tune a BERT model, Collaboratory was a good available solution to run the

experiments due to its easy usage and high computation power. However, the

Free version of Colab has many limitations (especially RAM) that prevented

the model from completion due to memory crashes and lack of resources. The

solution was the premium version of Colab with a more considerable amount of

RAM and access to larger GPUs and TPUs.

Three Colab projects were prepared to run three experiments with the three

datasets mentioned earlier, and I made sure that all the three experiments run on

the same hardware resources and the same BERT configurations, which will be

presented later in this chapter. I have also connected Colab projects to Google

drive to save all the logs, results, and training checkpoints for later use to predict

and evaluate the results after the training process.

In all the experiment, it was hard to get a chance to run the experiment on

Tensor processing units (TPUs) even with the pro version to the limited number

of TPUs and the high

48

demand and usage on them, so I ran all the experiments with the exact Nvidia

CUDA GPU specifications:

• GPU version: Tesla P100 PCI-E

• Memory: 16280 MiB

• Driver Version: 460.32.03

• CUDA Version: 11.2

5.2 AraBERT

Although Google introduced their multilanguage model with the BERT

architecture and it supports the Arabic language. However, researchers found

that the performance could improve with a pre-trained BERT model on specific

language, which was the case in AraBERT where the authors pre-trained BERT

on a large set of Arabic words and outperformed the original Multilanguage

model after fine-tuning their model on several NLP tasks such as NER, question

answering and sentiment analysis [53].

AraBERT appeared for the first time in 2020 [45]. It is a pre-trained

language model based on Google’s BERT architecture and uses the same

BERT-Base config. Till the moment of writing this research, the last AraBERT

version is 2. AraBERT version 2 was trained on a large dataset (77 GB) with

around 8.6 billion words and 200 million sentences. AraBERT v2 comes with

two different pre-segmented models: AraBERTv0.2-base and AraBERTv0.2-

large [45]. The first model will be used in this research due to the enormous

number of resources and time needed to fine-tune the second large model.

49

AraBERT Dataset combines several datasets such as the Arabic Wikipedia

dump, the 1.5B words Arabic corpus, OSCAR, the OSIAN corpus, and the

Assafir news articles. It consists of more than 8.6 billion words before using the

Farasa segmentation [53]; Farasa is an Arabic segmenter. Segmentation

involves breaking Arabic words into their constituent clitics [54].

AraBERT comes with a well-implemented preprocessor to process the

Arabic text before starting the training to improve the model's final results.

AraBERT preprocessor performs the following operations on the text [45]:

• Stripping the words from the Arabic Tashkeel.

• Stripping the words from the Arabic Tatweel.

• Replace URLs and emails with Arabic tokens.

• Remove any HTML markups.

• Remove non-digits repetition (removes any characters or special

characters that are repeated more than two times).

• Remove emojis.

• Insert whitespace before and after all non-Arabic digits or English Digits

and Alphabet and the two brackets.

• Replace slash with a dash.

After reviewing several BERT pre-trained models, AraBERT achieved the

best performance among all. Thus, it will be used in this research along with its

text preprocessor.

50

5.3 Used tools

In order to achieve the desired results for the experiments, many libraries

were used to prepare and preprocess the data and to work along with the BERT

to provide the best results:

• PyArabic 15 : is an open-source python library that provides the

essential functions to manipulate Arabic text and letters, such as

removing diacritics, detecting Arabic letters, and stripping Arabic

words (removing Tashkeel). This library was required and used

heavily by the AraBERT to perform the text preprocessing and helps

in internal functionalities.

• Torch16: Torch is an open-source scientific computing framework

with excellent support for AI and machine learning algorithms and

models that requires a lot of computation power. It has many utilities

and machine learning algorithms, and optimizers that utilize the

computation power and make the process of running complex deep-

learning projects easy and fast. Among all the utilities and

algorithms in torch, the following were used in this research:

o Linear: Is the classifier that will serve as a way to get the

output of BERT model and convert them into the classes we

want to predict [55].

o Sigmoid: As mentioned earlier in the background section, I

have used the sigmoid from the torch with the logistics

15 https://pypi.org/project/PyArabic/
16 https://pytorch.org/

51

regression Linear classifier to get the probabilities per class

[56].

o BCE Loss function: It stands from Binary Cross-Entropy. It

is used in this research to measure the error in each class by

combining it with the probabilities from the sigmoid

function.

o Dataset: An abstract class in a torch that torch DataLoader

heavily uses, it is used in this experiment with custom

implementation for the length and the getItems functions to

prepare the dataset and feed it to the DataLoader.

o DataLoader: a torch class that uses the Dataset class and

provides many functionalities on the data. In this research, it

is used to fetch the data from the dataset in the form of

batches and feed it to BERT. It is also used to identify the

number of workers used per batch.

• Pytorch lightning17 is an open-source python library developed by

William Falcon. It is a library built on top of a torch and designed to

make research projects more scalable and quicker to iterate. The

following PyTorch lightening functionalities were used in this

research:

o Metrics: several metrics were used to evaluate the results,

such as accuracy, F1, precision, recall, and AUROC.

AUROC stands for Area Under the Receiver Operating

Characteristic Curve. The curve is created by plotting the

true positive rate (TPR) vs. the false positive rate (FPR),

17 https://www.pytorchlightning.ai/

52

where the closest curve to one is the better results. In this

research, I use it to measure the performance of each class.

o Early Stopping: a function that takes the monitoring matrix

and another numeric parameter to stop the training if the

monitoring matrix did not improve after a number of Epocs,

which is identified by the second numeric parameter (called:

patience). In this research, I used the validation loss as the

monitoring matrix and five as the patience.

o Model Checkpoints: training the model is both resource and

time-consuming process, and it is frustrating to restart this

process in case of any interruption for the training process.

Checkpoints can be used to save a checkpoint after training

each Epoc to come back and resume the model training

process from the last saved checkpoint.

o Tensor Board Logger: This tool provides several

measurements and visualization during the training process;

it provides and visualizes some important matrices like

accuracy. It is used in this research to provide some crucial

graphs for each class.

• Transformers18: is an open-source library provided by hugging-face,

which provides thousands of pre-trained models to perform tasks on

texts such as classification. It is used in this research to help in fine-

tuning the AraBERT model. The tools used in this research are:

o AdamW: implements AdamW optimizer to adjust and

optimize the learning rate during the training.

18 https://huggingface.co/transformers/

53

o Auto tokenizer: it is used to create a model that is an instance

of the BERT Model from a specific pre-trained model. In our

case, it was the AraBERT version 2 model.

o Get linear schedule with warmup: a function that uses the

AdamW optimizer, the number of the warmup steps, and the

number of the training steps to prepare the schedular with a

learning rate the decreases in early from the initial learning

rate set in the optimizer to 0, after a warmup period during

which it increases linearly from 0 to the initial learning rate

set in the optimizer.

• Sklearn19: an open-source library that contains many efficient tools

for statistical modeling and machine learning, including clustering,

regression, and classification, the following tools from Sklearn were

used in this research:

o Train test split: a function used for splitting data arrays into

two subsets, testing and training data. It was used twice in

this research to split the datasets first to train dataset (0.7)

and test dataset (0.3) and used a second time to split the test

dataset and generate a validation dataset (0.1) and leave the

other 0.2 for the test dataset.

o Classification report: a function used to print a text report

that shows the main classification metrics (precision, recall,

f1-score, support, macro avg, micro avg, and weighted avg)

for each class.

19 https://scikit-learn.org/stable/

54

• Matplotlib 20 : an open-source python library that works like

MATLAB, used in this research to visualize the results of the

experiments, and provide some graphs.

• TQDM21: an open-source library, the name was derived from the

Arabic word (تقدم), which mean progress in English, it is used in this

research to visualize the progress of training per Epoc.

5.4 Code explanation

The experiment code is written on Colab, and the link can be found in the

Appendix. The Colab project contains explanation and documentation for each

step and is supported with examples and charts. However, in this section, I will

explain the main steps in the code at an abstract level.

The first step after linking the Colab project to a google drive account and

reserving the resources in Colab is importing the utilities needed for the

experiment, which was explained in the previous section.

The second section in the code starts with loading the dataset from Google

drive and split it into three datasets randomly, training dataset (70%), which

will be used to train the model, test dataset (20%), which will be used to test

and evaluate the model and validation dataset (10%) which will be used to fine-

tune the hyperparameters of the model during training such as learning rate and

optimizers.

The third section of the code starts with identifying the AraBERT model

version used for the experiment and uses its text pre-processor to pre-process

20 https://matplotlib.org/
21 https://tqdm.github.io/

55

the reviews in the training, test, and validation datasets. It also pulls the classes

from the dataset and finds the number of reviews for each class to detect any

unbalanced classes in the training dataset and take samples of the unbalanced

classes.

The first step in the fourth section of the code identifies the tokenizer used

in the experiment from the pre-trained AraBERT model, followed by some

examples of how the tokenization works, and explains the input ids and

attention mask concepts. It also shows some examples of how each sentence is

wrapped with the CLS and SEP tokens. The last step in this section iterates over

the training dataset and finds the number of tokens per sentence and visualizes

that in a graph. The maximum number of tokens per sentence in the training

dataset was 370 tokens; this number will be fed to the model to limit the number

of tokens and improve the model performance.

The sixth section of the code is all about preparing the datasets in a flexible

way where they can be fed to the model in batches by using the torch lightning

dataset and data loaders I explained in the previous section, many examples

were provided on how the data can be fetched in batched and shows the input

ids, attention masks and label for a sample review. This section also contains a

step to download the AraBERT model and prepare it for the next section. It also

has some steps to show the number of hidden layers and the shape of a sample

model. The last step in this section is for identifying the number of Epocs that

will be used, the batch size, and instantiating an instance of the data loader class.

The model section has the main class of the model, which is a lightening

module with overriding the following hooks:

• Init: in this function, I assign the BERT model (the AraBERT

instance from the previous section), the classifies (the logistics

regression linear classifier will be used as discussed earlier), training

56

and warmup steps (will be calculated later and passed to the model

as parameters) and the criterion which will be the BCELoss function.

• Forward: is the core step of the model where it takes the input ids

and attention mask for a review, pass them to the BERT model and

apply the linear classification, sigmoid on the BERT results to get

the probabilities for each class; it also uses the loss function to find

the loss for each class.

• Training step: this is the training in the module where it takes a batch

of reviews and passes the reviews one by one to the forward step;

this step returns the outputs and the loss for the whole batch. It also

logs the training loss per batch to keep an eye on it during the

training.

• Validation step: this step is similar to the training step except that it

takes batches from the validation dataset and calculates and logs the

validation loss.

• Test step: the testing step is also the same as the training and

validation step except that it takes its baches from the test dataset

and calculates and logs the test loss.

• Training Epoch end: This hook gets fired at the end of each Epoc. It

combines the prediction for each label from all batches into one

array and calculates the AUROC for each label.

• Configure optimizers: this hook holds the optimizer (AdamW) and

the warmup steps configurations to adjust the learning rate and

improve the performance model.

The training section starts with clearing all previous logs and identifying the

folders where the logs will be saved to link them to the tensor board.

Checkpoints are also defined in this section to reduce the time and effort by

57

allowing the model to resume training from the last saved Epoc if any

interruption happened. Once the loggers and checkpoints are ready, I can start

instantiating a trainer instance from the lightning module explained in the

previous section and start training the model by passing the model and data

module to the fit function in the trainer. During the training process and after

each Epoc, the Epoc number, number of steps, and the validation loss will be

printed for the whole Epoc, and a new checkpoint will be saved. After each

Epoc, the early stopping will check if the validation loss is improving from the

last Epoc or not, it will continue the training if it is improving, or it will stop the

training process if the loss did not improve for the past specific number of Epocs

(the number is 5 in this experiment). The final step of this section is to find the

training loss for the last saved Epoc (which has the best validation loss). The

closes the test loss to the validation loss, the better the model.

The Prediction section loads the model from the last saved checkpoint (the

Epoc with best validation loss) and provides two examples of providing any

random review to the model to get the probabilities predictions for each class.

The last section of the code is all about evaluating the model's performance

by using the reviews in the test dataset to get the model predictions for each

review and compare with the actual values and calculate all the needed matrices.

The evaluation results will be shown in detail in the next chapter.

58

Chapter 6

Experiments Results and Analysis

59

After preparing the datasets, the experiment environment, and code, this

chapter will present the results of the three-experiment performed and discuss

the results:

• Experiment I: Performed on the original dataset with 33 classes.

• Experiment II: Performed on a generated dataset of 5 classes: User’s

requirements, Non-functional requirements, Software bugs, not

clear and not relevant.

• Experiment III: Performed on a generated dataset of 3 classes:

Informative, no clear, and not relevant.

6.1 Hyperparameter values

Hyperparameters are a set of parameters or configurations that controls the

learning process. After reviewing the theory behind these parameters and some

similar experiments, I found that some of these parameters are experimental

parameter where the best value of the parameter can be found by running the

experiments with different values and monitor the results, an example for that

is the learning rate where I ran the experiment with five different values of

learning rate (the most used values in the other previous research) to find the

best result in this experiment.

Max token count is an essential parameter in BERT where it identifies the

amount of memory needed to be reserved to handle one review. If this value is

not identified, the BERT will take the default value of 512 tokens and truncate

all the tokens above 512. Due to the memory limitation in this experiment, I

found that most of the review in the dataset have less than 200 tokens, only a

60

few of them have above 200, and the maximum token length was 370 token

which was used in the experiment as shown in Figure 6.1 where the horizontal

axes represent the number of tokens while the vertical axes represent the number

of reviews,

The number of Epocs is a crucial factor in BERT, where a small amount of

Epocs can produce a lousy accuracy and learning, and many Epocs could

produce an overfitting model. In this research, I used Early stopping to stop the

training process before the model begins to over-fit. After few experiments, I

noticed that the model usually keeps improving till 5 to 15 Epocs, and then it

begins overfitting. 15 Epocs was the number of Epocs in this research, but only

9 Epocs reached before the model stopped.

Figure 6. 1: The number of tokens vs review count.

61

The batch size value is highly recommended to be a power of 2; this is

related to the alignment between the virtual and the physical processors where

the physical process is usually a power of 2 and using a different number for

virtual processors can lead to bad performance. In this research, and due to the

limitation in processing and RAM resources, the value of 8 was selected to be

the batch size.

The learning rate might be the most crucial hyperparameter in the model;

the linear with the warmup schedular was the most recommended schedular for

BERT models where the models learning rate starts improving during the

specified warmup steps until it reaches the specified initial learning, then the

learning rate starts going down from the initial rate till it reaches zero during

the training steps. The total number of steps per Epoc is the number of the

reviews in the dataset, while the number of the total steps in the model is the

number of steps per Epoc multiplied by the number of Epoc specified for the

model. After reviewing the theory and the previous work, 3 and 5 was the

number of steps that were usually used as the warmup steps and achieved the

best results, and both numbers were tested in this experiment along with

different learning rates (1e-5, 2e-5, 3e-5) and five warmup steps with 2e-5

achieved the best results. Figure 6.2 shows an example of the linear learning

rate with warmup steps behaves with a hundred total training steps and two

warmup steps:

62

Early stopping is used in this experiment to prevent the model from

overfitting, stopping the training process when the model is not improving for

a specific number of Epocs. After reviewing the previous similar experiment

and perform out an experiment with different values, I found that usually after

a specific number of Epocs, the validation loss stops improving, and making

sure that the validation loss will not get improved after, 5 EPOCs were used to

monitor if there is any improvement can be found on the validation loss. The

best Epoc is saved in this experiment as a checkpoint where it can be loaded

and used later as the best result the model can produce. Table 6.1 shows a

summary of the hyperparameters used in this research for all experiments.

Figure 6. 2: Warmup and learning rate graph.

63

Hyperparameter value

Max token count 370

Epocs 50

Batch size 8

AdamW learning rate 2e-5

Total training steps 30800

Warmup steps 6160

Early stopping monitor Validation loss

Early stopping patience 5

Checkpoint save the top value 1

Table 6. 1: The hyperparameters values used in all experiments.

6.2 Datasets and text preprocessing and Tokenization

6.2.1 Splitting dataset and solve the unbalanced class issue

In order to get the hyperparameters works to optimize the model, a

validation dataset was added along with the train and test datasets with a portion

of 10% of the original dataset. The total number of reviews in the original

dataset was 10000 reviews, and table 6.2 shows the number of reviews used for

train, test and validation datasets.

dataset train test validate

count 7000 2000 1000
Table 6. 2: Train, test and validate datasets.

64

After analyzing the classes in the training dataset, one unbalanced class was

found in all three experiments, which is the not relevant class. The three figures

below (6.3, 6.4, 6.5) show the number of reviews per class in each experiment.

Figure 6. 3: The reviews distribution in the train dataset of Exp. I.

Figure 6. 4: The reviews distribution in the train dataset of Exp. II. Figure 6. 5: The reviews distribution in the train dataset of Exp. III.

65

Imbalanced classes can cause severe issues in the model performance where

the model can simply guess and always classify any review to the unbalanced

class and get high accuracy [57]. For example, if 95% of the reviews belong to

the not relevant class, then the model can predict any review to be not relevant

and get an accuracy of 95%. There are many techniques to solve unbalanced

class issues, such as changing the performance metric, changing the algorithm,

and different resampling techniques [57].

• Changing the performance metric: Accuracy could not be the best

metric to use when there is an unbalanced class in the dataset as it

could be misleading. Different other evaluation matrices were used

in this research and will be presented later in the following sections

of this chapter:

o Precision: precision measures the model exactness where it

represents the number of true positives divided by all

positive predictions. Lower precision means a higher number

of false positives.

o Recall: recall measures the model completeness where it

represents the number of true positives divided by all

positive values in the test dataset. Low recall means a higher

number of false negatives.

o F1 score: the weighted average of precision and recall.

Changing the algorithm: Changing the classifying algorithm could

be a solution to resolve the imbalanced classes issue, but not in this

research where the Linear classifier gave the best results.

• Resampling techniques: two types of resampling can be used to

balance the number of reviews assigned to each class.

66

o Oversampling: This can be done by replicating the minority

classes as much as needed to reach a close ratio of data points

for each class.

o Under-sampling: This can be done by removing some of the

reviews assigned to the majority classes as much as needed

to reach a close ratio of data points for each class. The under-

sampling technique was used in this research on the training

dataset by considering only 3000 reviews of the not relevant

class and remove the others.

Table 6.3 shows the number of reviews per dataset in Experiment I after

resampling the not-relevant class. The same technique was used in all the

experiments.

dataset train test validate

count 5026 2000 1000
Table 6. 3: Train, test and validation datasets after resampling.

6.2.2 Text preprocessing and tokenization

Data Preprocessing is an essential step as it improves the data quality and

improves the extraction of meaningful text from the data. In this research, I used

the pre-processor introduced by AraBERT (explained in detail in the previous

67

chapter). It was highly recommended to use the processor provided by the

model itself as the model was trained on a large amount of text preprocessed by

the same pre-processor.

BERT was trained using the word piece tokenization, which means that one

word can be broken into more than one sub-word. A whole sentence in BERT

is represented by one vector before being fed to the classifier where the first

token in the vector represents the whole vector; to achieve this, a [CLS] token

will be added as the first token for each review. [SEP] token will also be added

at the end of each review to inform the model about the sentence end.

Meanwhile, a [PAD] token is added to fill the rest of the vector if the number

of tokens in a vector is less than the specified max token size. [UNK] is another

token in BERT, representing the tokens that are new to the model (the model

was not trained on this token and did not recognize it). UNK stands for the

unknown token, while this problem is known as the out of vocabulary problem

(OOV).

During the training process of the BERT model, each token will be assigned

to a unique id, so when the model is being used and fine-tuned as a pre-trained

model, all the vectors need to be generated as a vector of ids where each it

represents its corresponding token. An attention mask is a mask that will be

used if the token length is smaller than the specified max token length. It is

the mask that is typically used for attention when the dataset has varying length

sentences.

Table 6.4 shows an example of a sentence with a specified max token length

of 12 where the first row shows the original sentence, the second row shows

how the AraBERT pre-processor stripped the word from Taskeel, Tatweel and

removing the duplicate characters and emojis. The third line shows the tokens

68

that AraBERT generated from the sentence, while the last two lines represent

the generated token ids and attention mask.

original طْبِيق هههههههههه ح التَّ
ا

ـــــو إصْلَ ــــ ــــ ــــ �� ارجـ

Pre-processed ارجو إصلاح التطبيق هه . .

Tokenized -

vector shape: 1 * 12

['[CLS]', 'ارجو', 'إصلاح', 'التطبيق', 'ه', '##ه', '.', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]']

Input ids -

vector shape: 1 * 12

[2, 43104, 6714, 11818, 138, 195, 20, 20, 3, 0, 0, 0]

Attention mask –

vector shape: 1 * 12

[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]

Table 6. 4: Example of AraBERT pre-processor and tokenizer.

6.3 Model training:

Figure 6.6 is an example from the first experiment that shows the executed

Epocs against the total number of steps where the horizontal axes represent the

number of steps while the vertical axes represent the number of Epocs. It is also

important to mention that this graph is a visualization of only the Epocs

considered in the training process, and it does not show the Epocs that were

ignored by the Early stopping.

69

Figure 6. 6: The number of Epoc against the number of steps.

As the model started training, logs were configured to print the validation

loss after each Epoc to monitor the validation loss and the early stopping during

the training process. Table 6.5 summarizes the Epocs executed and the

validation loss after each Epoc for the three conducted experiments. It is

noticeable that all experiment started with a relatively high validation loss Epoc

and started improving after each Epoc. 14 Epocs were Executed for the first

experiment while the validation loss kept improving till the ninth Epoc, the next

5 Epocs were executed, but none of them provided a better value of validation

loss. Hence, the model stopped learning and considered the ninth Epoc is the

end of the model training process. 10 Epocs were executed for both the second

and the third experiments, and they both got the best result and stopped training

at the fifth Epoc.

EPOC # Global steps Validation loss

Experiment I Experiment

II

Experiment

III

70

0 616 0.24660 0.30627 0.27402

1 1233 0.12045 0.21443 0.20466

2 1850 0.08107 0.20298 0.14673

3 2467 0.06350 0.19601 0.13667

4 3084 0.05338 0.14396 Not the best

5 3701 0.04579 0.13933 0.11721

6 4318 0.03581 Not the best Not the best

7 4935 0.03261 Not the best Not the best

8 5552 0.02999 Not the best Not the best

9 6169 0.02869 Not the best Not the best

10 6786 Not the best Not the best Not the best

11 7403 Not the best - -

12 8020 Not the best - -

13 8537 Not the best - -

14 9254 Not the best - -
Table 6. 5: Validation loss per Epoc for the three experiments.

After training the model, the test loss can be used compared to the validation

loss to evaluate the model. Table 6.6 shows the final test and validation loss for

each experiment.

Experiment Experiment I Experiment II Experiment III

Test loss 0.03244 0.13505 0.11721

Val loss 0.02869 0.13933 0.11210
Table 6. 6: Test and validation loss for the three experiments.

71

6.4 Experiment I result

6.4.1 AUROC per class

Aria Under the Receiver Operating Characteristic (AUROC) is one of the

most important matrices to measure the model performance, especially in multi-

class cases, it is also known as the AUC-ROC curve, where Aria Under Curve

(AUC) represents the measure of separability or degree, and the AUC represents

the probability. AUROC tells how the model can distinguish between

multiclass. The higher AUROC, the better the model is in distinguishing

between the classes. AUROC is plotted with the True positive rate (TPR) on the

vertical axes against the false positive rate (FPR) on the horizontal axes. The

AUROC value is between 1 and 0, where 1 represents the perfect model [58].

Figure 6.7 shows an example of a perfect model where the model can

entirely distinguish the two classes without overlapping. Meanwhile, the two

classes in the second example (figure 6.8) show that the two classes overlap by

30%, which means that the model has a chance of 70% to distinguish between

the two classes, which means that the AUROC result for each class is 0.7.

 Figure 6. 7: An example of a perfect AUROC curve.

72

Table 6.7 shows a summary of the AUROC values achieved in the first

experiment for each class. Most of the classes have good AUROC values above

0.9, except two classes got less than 0.9. These classes were focused on by re-

visiting the reviews that represent these classes in the dataset. It was found that

most of the reviews assigned to these two classes are written and described with

general words in Arabic that could also be used in other classes. Furthermore,

most of the reviews assigned to these two classes are also assigned to other

classes (have multi-labels) because it was unclear whether these reviews belong

to a specific class during the manual classification process.

Class AUROC

Not relevant 0.9838

Issues appeared after updates 0.9453

Missing business features (user suggestions) 0.8831

annoying ads 0.9880

UI/UX issues/suggestions 0.9898

Notifications 0.9969

Availability 0.9871

Performance 0.9573

Work offline 0.9996

Bugs related to the app features 0.9588

Figure 6. 8: An example of a 0.7 AUROC curve.

73

Compatability 0.9836

Issues related to the app languages 0.9998

Political and racism reviews 0.9993

Suddenly crash 0.9912

Privacy 0.9944

Usability 0.9532

Lack of instructions and guidance 0.9507

Internet connection and coverage issues 0.9998

Business limitations 0.9751

Human and technical support issues 0.9758

High cost 0.9686

Subscription 0.9838

Payment issues & voucher 0.9867

App content issues 0.9560

App size 0.8673

Login, registration, password reset, and activation issues 0.9958

Download & installation issues 0.9300

No Free edition 0.9044

Communication issues 0.9753

Supportability 0.9963

High internet consumption 0.9326

Security 0.9149

Not clear 0.9129
Table 6. 7: AUROC values per class in Exp. I.

Figure 6.9 shows the AUROC curve for only one class which is the not

relevant class from the first experiment. The rest of the graphs for all the other

classes can be found in the Colab project in Appendix A.

74

Figure 6. 9: Exp. I, the not relevant class AUROC curve.

6.4.2 Train vs validation loss

The validation and training loss comparison is an essential step since it is

one of the primary keys to identify if your model is Overfitting or Underfitting,

where the higher train loss indicates a possibility of underfitting. In contrast, a

higher validation loss indicated the possibility of an overfitting model. Figure

6.10, 6.11 and Table 6.8 shows a comparison between the validation and

training loss in this experiment at the best Epoc of the model, the difference

between the two values is less than 0.6% for the training loss (underfitting)

which indicates a good model comparing with the other similar experiments.

Matrix At the best Epoc #9

Validation loss 0.02869

Training loss 0.0351

difference 0.00641
Table 6. 8: Train vs Validation loss in Exp I.

75

Figure 6. 10: Exp. I, training loss curve.

Figure 6. 11: Exp. I, validation loss curve.

76

6.4.3 Prediction

After training the model, I have used the saved checkpoint of the last saved

Epoc (best result) to feed the model with random Arabic sentences and let the

model predicts the classes for them. Table 6.9 shows the example and the top

three classes predicted by the model, along with their probabilities.

Text Prediction

Class Probability

 Not relevant 0.9906 تطبيق جيد جدا بارك الله فيكم وشكرا

Issues appeared after updates 0.0009

Missing business features (user

suggestions)

0.0007

ومش راضي التطبيق سييء مبارح نزلتو

 يشتغل معي

Not clear 0.8425

Not relevant 0.0730

Compatability 0.0444

يعلق التطبيق فيه مشاكل بطيء وبضلو

وفيه كثير مشاكل ما بدعم لغة عربية

 وكمان تطبيق يحارب المحتوى الفلسطيني

Issues related to the app languages 00.6598

Performance 0.0705

Political and racism reviews 0.0561
Table 6. 9: Model predications in Exp I.

6.4.4 Experiment result

The final results of the model per class are shown in table 6.10. The last

column shows the number of reviews from the dataset used to support its

corresponding class and produce the results. I noticed that some of the classes

have a precision, accuracy, and F1 of zero; most of these classes have less than

six reviews to support them. Usually, the small number of reviews is not enough

to train the model for a specific class and produce results, so these classes with

77

less than six reviews are not reliable and cannot be counted on. The solution for

such cases is to remove these classes from the classes set or enrich the dataset

with more reviews to increase the number of reviews labeled with these classes.

The final result for the whole model is presented in table 6.11.

Class Precision Recall F1-score Support

Not relevant 0.93 0.98 0.95 1455

Issues appeared after updates 0.25 0.07 0.11 30

Missing business features (user suggestions) 1.00 0.08 0.15 24

annoying ads 0.92 0.96 0.94 23

UI/UX issues/suggestions 0.00 0.00 0.00 3

Notifications 1.00 0.25 0.40 4

Availability 0.82 0.90 0.86 40

Performance 0.58 0.72 0.64 25

Work offline 0.50 1.00 0.67 5

Bugs related to the app features 0.29 0.72 0.41 36

Compatability 0.47 0.70 0.56 23

Issues related to the app languages 0.79 1.00 0.88 11

Political and racism reviews 0.72 1.00 0.84 21

Suddenly crash 0.22 0.92 0.36 12

Privacy 0.00 0.00 0.00 1

Usability 0.50 0.10 0.17 10

Lack of instructions and guidance 0.33 0.47 0.39 34

Internet connection and coverage issues 0.75 1.00 0.86 6

Business limitations 0.00 0.00 0.00 3

Human and technical support issues 0.39 0.89 0.54 56

78

High cost 0.60 0.69 0.64 35

Subscription 0.61 0.69 0.65 45

Payment issues & voucher 0.50 0.90 0.64 61

App content issues 0.34 0.55 0.42 20

App size 0.00 0.00 0.00 2

Login, registration, password reset, and

activation issues

0.61 0.77 0.68 26

Download & installation issues 0.00 0.00 0.00 3

No Free edition 0.24 0.57 0.33 7

Communication issues 0.68 0.78 0.72 54

Supportability 0.50 0.71 0.59 7

High internet consumption 0.00 0.00 0.00 6

Security 0.00 0.00 0.00 1

Not clear 0.27 0.52 0.36 27

micro avg 0.76 0.88 0.82 2116

macro avg 0.45 0.54 0.45 2116

weighted avg 0.80 0.88 0.83 2116

samples avg 0.85 0.90 0.86 2116

Table 6. 10: Results per class in Exp I.

Matrix Accuracy Precision Recall F1

Value 0.99 0.92 0.80 0.86
Table 6. 11: Final results in Exp I.

79

Figure 6. 13: Exp. II, AUROC curve for the Bugs class. Figure 6. 12: Exp. II, AUROC curve for the Users requirements

class.

6.5 Experiment II result

For the second experiment, the same model, hyperparameters, and

optimization techniques were used; the only difference between the two

experiments is the number of classes.

6.5.1 AUROC per class

Table 6.12 show the AUROC results for each class in the second

experiment, and figures 6.13, 6.14, 6.15, 6.16, 6.17 shows the AUROC curve

for each class where the horizontal axes represent the number of Epocs while

the vertical axes represent the AUROC value, note that the values in table 6.12

represent the value on the curve at the best Epoc which was the fifth Epoc in

this experiment.

Class AUROC

Functional Requirements 0.9795

Non Functional Requirements 0.9607

Bugs 0.9687

Not Relevant 0.9839

Not Clear 0.8291
Table 6. 12: AUROC values per class in Exp. II.

80

Figure 6. 14: Exp. II, AUROC curve for the non-functional requirements

class. Figure 6. 15: Exp. II, AUROC curve for the not clear class.

Figure 6. 16: Exp. II, AUROC curve for the not relevant class.

6.5.2 Train vs validation loss

Table 6.13 shows the validation and the training loss in the second

experiment, while figures 6.18, 6.19 show the validation and train loss graphs.

81

The validation loss in this experiment is higher than the training loss, which

means the model is overfitting by 9.6%.

Matrix At the best Epoc #5

Validation loss 0.13933

Training loss 0.0432

difference 0.09613
Table 6. 13: Train vs Validation loss in Exp II.

Figure 6. 17: Exp. II, the training loss curve.

Figure 6. 18: Exp. II, the validation loss curve.

82

6.5.3 Prediction

As mentioned in the first experiment, I have used three sentences and fed

them to the model and see the model’s predictions. Table 6.14 shows the model

results.

Text Prediction

Class Probability

 Not relevant 0.9956 تطبيق جيد جدا بارك الله فيكم وشكرا

Not Clear 0.0055

Non Functional Requirements 0.0052

التطبيق سييء مبارح نزلتو ومش راضي

 يشتغل معي

Not clear 0.7098

Not relevant 0.2053

Bugs 0.1740

يعلق التطبيق فيه مشاكل بطيء وبضلو

وفيه كثير مشاكل ما بدعم لغة عربية

وكمان تطبيق يحارب المحتوى

 الفلسطيني

Non Functional Requirements 0.9804

Bugs 0.4194

Not Clear 0.0552

Table 6. 14: Model predications in Exp II.

6.5.4 Experiment result

Table 6.15 shows the matrix score per class, while table 6.16 shows the final

matrices results of the whole model. I noticed that the final Recall and F1-score

83

were improved compared to the first experiment, while Accuracy and Precision

were better in the first experiment than this one.

Class Precision Recall F1-score Support

Functional Requirements 0.78 0.75 0.77 181

Non Functional Requirements 0.81 0.68 0.74 333

Bugs 0.82 0.68 0.74 275

Not Relevant 0.96 0.96 0.96 1455

Not Clear 0.33 0.15 0.21 27

micro avg 0.91 0.86 0.88 2271

macro avg 0.74 0.64 0.68 2271

weighted avg 0.90 0.86 0.88 2271

samples avg 0.89 0.88 0.88 2271
Table 6. 15: Results per class in Exp II.

Matrix Accuracy Precision Recall F1-score

Value 0.94 0.90 0.86 0.88
Table 6. 16: Final results in Exp II.

6.6 Experiment III result

For the third experiment, the same model, hyperparameters, and

optimization techniques were used. The only difference between the

experiments is the number of classes.

6.6.1 AUROC per class

Table 6.17 show the AUROC results for each class in the third experiment,

and figures 6.21, 6.22, 6.23 shows the AUROC curve for each class where the

horizontal axes represent the number of Epocs while the vertical axes represent

84

Figure 6. 19: Exp. III, AUROC curve for the informative class. Figure 6. 20: Exp. III, AUROC curve for the not clear class.

Figure 6. 21: Exp. III, AUROC curve for the not relevant class.

the AUROC value, note that the values in table 6.17 represent the value on the

curve at the best Epoc which was the fifth Epoc in this experiment.

Class AUROC

Informative 0.9821

Not Relevant 0.9834

Not Clear 0.9247
Table 6. 17: AUROC values per class in Exp. III.

85

Figure 6. 22: Exp. III, the training loss curve.

Figure 6. 23: Exp. III, the validation loss curve.

6.6.2 Train vs validation loss

Table 6.18 shows the validation and the training loss in the second

experiment, while figures 6.24, 6.25 show the validation and train loss graphs.

The validation loss in this experiment is higher than the training loss, which

means the model is overfitting by 8.5%.

Matrix At the best Epoc #5

Validation loss 0.11721

Training loss 0.03171

difference 0.0855
Table 6. 18: Train vs Validation loss in Exp III.

86

6.6.3 Prediction

Like the first and second experiments, I used three sentences, fed them to the

model, and saw the model’s predictions. Table 6.19 shows the model results.

Text Prediction

Class Probability

 Not relevant 0.9973 تطبيق جيد جدا بارك الله فيكم وشكرا

Not Clear 0.0030

Informative 0.0023

التطبيق سييء مبارح نزلتو ومش راضي

 يشتغل معي

Not Clear 0.6601

Informative 0.2958

Not Relevant 0.1505

التطبيق فيه مشاكل بطيء وبضلو يعلق

وفيه كثير مشاكل ما بدعم لغة عربية

 وكمان تطبيق يحارب المحتوى الفلسطيني

Informative 0.9877

Not Clear 0.0088

Not relevant 0.0082
Table 6. 19: Model predications in Exp III.

6.6.4 Experiment Results

Table 6.20 shows the matrix score per class, while table 6.21 shows the final

matrices results of the whole model. After re-visiting the first and second

experiment results, this experiment outperformed the second experiment by

Accuracy, Precision, Recall, and F1-score while it also outperformed the first

experiment by Precision, Recall, and F1-score.

Class Precision Recall F1-score Support

Informative 0.89 0.88 0.88 518

87

Not Relevant 0.97 0.96 0.96 1455

Not Clear 0.41 0.26 0.32 27

micro avg 0.94 0.93 0.93 2000

macro avg 0.76 0.72 0.72 2000

weighted avg 0.94 0.93 0.93 2000

samples avg 0.93 0.93 0.93 2000
Table 6. 20: Results per class in Exp III.

Matrix Accuracy Precision Recall F1-score

Value 0.95 0.94 0.92 0.93

Table 6. 21: Final results in Exp III.

88

Chapter 7

Conclusion

89

7.1 Conclusions

This thesis presents fully automated approach that helps mobile app

developers classify users’ feedback on their applications into different classes.

Three different experiments were conducted in this thesis using a dataset of 10K

reviews collected from different apps belongs to different business domains.

The First experiment aims to classify the reviews to a corpus of 33 classes

that describe a different set of users’ requirements, potential software bugs, and

some non-functional requirements and achieved an accuracy of 99% and 86%

F1-score while the model was underfitting by only 0.06%. The second

experiment aims to classy the reviews into five main classes: not relevant, not

clear, user requirement, non-functional requirement, and software bugs, and

achieved accuracy of 94% and 88% F1-score while the model was overfitting

by 9.6%. The third experiment aims to classify the reviews into three parent

classes: Informative reviews, not relevant and not clear, and achieved an

accuracy of 95% and 93% F1-score while the model was overfitting by 8.5%.

During the manual classification process and after conducting the three

experiments, it was found that the reviews on App platforms can be beneficial

and could hold some vital information about missing feature or critical issues,

or even to get the app developers attention to some new issues appeared after

an App update for example. I also found that it is hard to manually analyze and

classify every single review added to the App due to the enormous number of

reviews, the number of reviews that are not informative and could be

misleading, the differences in users’ dialects, the typos in user’s feedback, the

long reviews that refer to different information and many other reasons. This

accurate automated approach saves a lot of time and effort for the app developer

to improve their application and align it with their users’ needs.

90

7.2 Future work

In the future, the intent is to enrich the data with extra reviews from a

different domain with different classes to improve the model performance. On

the other hand, this model can be hosted on a server and exposed for external

usage in the form of APIs or even a web application where the app developers

can identify their application and get an analysis of the reviews continuously. It

can also be integrated with another tool to continuously scrap all the new

reviews from specific apps and feed them to the model to get the results for the

App developers. Continuous learning is also an important feature that can be

implemented to continuously feed and train the model and convert it to an expert

model.

Other Ideas can also be implemented in the future, such as integrating the

model with other open-source sentiment analysis tools and link the analysis of

the users' reviews in this model to their sentiments.

91

Appendix A

 Dataset:

Available at:

https://drive.google.com/file/d/1m2i7kjAiLFsH7u41Gg8vyyD6Etl70K7c/view?us

p=sharing

 Colab Experiments:

Experiment I is available at:

https://colab.research.google.com/drive/1adkyK7i3R0TDycdOKQT168gYk7yke

VRF?usp=sharing

Experiment II is available at:

https://colab.research.google.com/drive/1jQW9wUPi5nIH7OHzsExQkCPEM_HP

R7sU?usp=sharing

Experiment III is available at:

https://colab.research.google.com/drive/10Ep1CjpOkDMId0XX_HdGaJNX1aFW

djD4?usp=sharing

https://drive.google.com/file/d/1m2i7kjAiLFsH7u41Gg8vyyD6Etl70K7c/view?usp=sharing
https://drive.google.com/file/d/1m2i7kjAiLFsH7u41Gg8vyyD6Etl70K7c/view?usp=sharing
https://colab.research.google.com/drive/1adkyK7i3R0TDycdOKQT168gYk7ykeVRF?usp=sharing
https://colab.research.google.com/drive/1adkyK7i3R0TDycdOKQT168gYk7ykeVRF?usp=sharing
https://colab.research.google.com/drive/1jQW9wUPi5nIH7OHzsExQkCPEM_HPR7sU?usp=sharing
https://colab.research.google.com/drive/1jQW9wUPi5nIH7OHzsExQkCPEM_HPR7sU?usp=sharing
https://colab.research.google.com/drive/10Ep1CjpOkDMId0XX_HdGaJNX1aFWdjD4?usp=sharing
https://colab.research.google.com/drive/10Ep1CjpOkDMId0XX_HdGaJNX1aFWdjD4?usp=sharing

92

References

[1] M Harman, Y Jia, Y Zhang, "App store mining and analysis: MSR for app

stores,," 2012 9th IEEE Working Conference on Mining Software

Repositories (MSR), pp. pp. 108-111, doi: 10.1109/MSR.2012.6224306,

2012.

[2] E Guzman, W Maalej, "How Do Users Like This Feature? A Fine Grained

Sentiment Analysis of App Reviews.," IEEE 22nd International

Requirements Engineering Conference (RE), 2014.

[3] A. A. Content., "The State of Mobile in 2020: How to Win on Mobile -

App Annie Content.," 2020. [Online]. Available:

https://www.appannie.com/en/insights/market-data/state-of-mobile-2020/.

[4] W. Martin, F. Sarro, Y. Jia, Y. Zhang and M. Harman, "A Survey of App

Store Analysis for Software Engineering," IEEE Transactions on Software

Engineering, 43(9), pp. pp.817-847, 2017.

[5] N Al Kilani, R Tailakh, A Hanani, "Automatic Classification of Apps

Reviews for Requirement Engineering: Exploring the Customers Need

from Healthcare Applications," Sixth International Conference on Social

Networks Analysis, Management and Security (SNAMS), 2019.

[6] N. Farra, E. Challita, R. A. Assi and H. Hajj, "Sentence-Level and

Document-Level Sentiment Mining for Arabic Texts," IEEE International

Conference on Data Mining Workshops., 2010.

[7] A Chader, L Hamdad, A Belkhiri, "Sentiment Analysis in Google Play

Store: Algerian Reviews Case. In: Chikhi S., Amine A., Chaoui A.,

Saidouni D., Kholladi M. (eds) Modelling and Implementation of Complex

Systems.," MISC 2020. Lecture Notes in Networks and Systems, vol 156.

Springer, Cham., 2021.

[8] A Shoukry, A Rafea, "Sentence-level Arabic sentiment analysis".

International Conference on Collaboration Technologies and Systems

(CTS), 2012.

[9] S AlOtaibi, MB Khan, "Sentiment Analysis Challenges of Informal Arabic

Language", The International Journal of Advanced Computer Science and

Applications, pp. Vol. 8, No. 2, PP. 278- 284, 2017.

[10] K. Darwish, N. Habash, M. Abbas, H. Al-Khalifa, H. Al-Natsheh, H.

Bouamor, et al., "A Panoramic Survey of Natural Language Processing in

the Arab World", Communications of the ACM, Vols. Vol. 64 No. 4, , pp.

Pages 72-81, 2021.

https://scholar.google.com/citations?user=IwSN8IgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=DG4Q08UAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Y7if1VEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cMs97_YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zVlpAfQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=ZJtGyBAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=mUvTxsEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=r5B2EfEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=szDaQLYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HseRNPMAAAAJ&hl=en&oi=sra

93

[11] D. Abuaiadah, D. Rajendran and M. Jarrar, "Clustering Arabic Tweets for

Sentiment Analysis", The 2017 IEEE/ACS 14th International Conference

on Computer Systems and Applications, pp. Pages(499-506), 2017.

[12] J Devlin, MW Chang, K Lee, K Toutanova, "Bert: Pre-training of deep

bidirectional transformers for language understanding", arXiv preprint

arXiv:1810.04805, 2018.

[13] Statcounter, "Mobile Operating System Market Share Worldwide," Global

Stats, 08 2021. [Online]. Available: https://gs.statcounter.com/os-market-

share/mobile/worldwide.

[14] W. contributors, "Business requirements," Wikipedia, 6 2021. [Online].

Available: https://en.wikipedia.org/wiki/Business_requirements.

[15] J. Parker, "Business, User, and System Requirements," 2012. [Online].

Available: https://enfocussolutions.com/business-user-and-system-

requirements/.

[16] altexsoft, "Functional and Nonfunctional Requirements: Specification and

Types," 2018. [Online]. Available:

https://www.altexsoft.com/blog/business/functional-and-non-functional-

requirements-specification-and-types/.

[17] Jha, N., Mahmoud, A. Mining non-functional requirements from App store

reviews. Empir Software Eng 24, 3659–3695 (2019).

https://doi.org/10.1007/s10664-019-09716-7.

[18] Jha N., Mahmoud A. (2017) Mining User Requirements from Application

Store Reviews Using Frame Semantics. In: Grünbacher P., Perini A. (eds)

Requirements Engineering: Foundation for Software Quality. REFSQ

2017. Lecture Notes in Computer Science, vol 10153. Springer, Cham.

https://doi.org/10.1007/978-3-319-54045-0_20.

[19] U. C. Design, "User Centered Design," [Online]. Available:

https://www.interaction-design.org/literature/topics/user-centered-design.

[20] N Bevan, J Carter, J Earthy, T Geis, S Harker, "What are user

requirements? Developing an ISO standard", Conference: HCI 2018:

Human-Computer Interaction. Theories, Methods, and Human Issues ,

2018.

[21] M. Bano, "Aligning services and requirements with user feedback," IEEE

22nd International Requirements Engineering Conference (RE), 2014.

[22] I. Scaled Agile, "Nonfunctional Requirements," 2021. [Online]. Available:

https://www.scaledagileframework.com/nonfunctional-requirements.

[23] GoodFirms, "What is a Software Bug?," [Online]. Available:

https://www.goodfirms.co/glossary/software-bug/.

https://scholar.google.com/citations?user=GiCqMFkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=qXwJkr8AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=9qY7NPEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=DEJZtRMAAAAJ&hl=en&oi=sra

94

[24] D. Inc., "Artificial Intelligence 101: Everything You Need to Know To

Understand AI," 2017. [Online]. Available:

https://medium.com/@diamond_io/artificial-intelligence-101-everything-

you-need-to-know-to-understand-ai-8e20fe4bd750.

[25] R. Horev, "BERT Explained: State of the art language model for NLP,"

2018. [Online]. Available: https://towardsdatascience.com/bert-explained-

state-of-the-art-language-model-for-nlp-f8b21a9b6270.

[26] G. M. L. Notebook, "Linear Classifiers," [Online]. Available:

https://sites.google.com/site/machinelearningnotebook2/classification/binar

y-classification/linear-classifiers.

[27] I Loshchilov, F Hutter, "Decoupled weight decay regularization", arXiv

preprint arXiv:1711.05101., 2017.

[28] W Maalej, H Nabil, "Bug report, feature request, or simply praise? On

automatically classifying app reviews", IEEE 23rd International

Requirements Engineering Conference (RE), 2015.

[29] AF Otoom, S Al-jdaeh, M Hammad, "Automated Classification of

Software Bug Reports", 9th International Conference on Information

Communication and Management - ICICM 2019, 2019.

[30] D Pagano, W Maalej,"User feedback in the appstore : an empirical study",

In Proc. of the International Conference on Requirements Engineering., pp.

pages 125–134, 2013, 2013.

[31] LVG Carreno, K Winbladh, "Analysis of user comments: an approach for

software requirements evolution", ICSE ’13 Proceedings of the 2013

International Conference on Software Engineering,, p. pages 582–591,

2013.

[32] E Guzman, W Maalej, "How Do Users Like This Feature? A Fine Grained

Sentiment Analysis of App Reviews", 2014 IEEE 22nd International

Requirements Engineering Conference (RE), 2014.

[33] H. Yang and P. Liang, "“Identification and classification of requirements

from app user reviews.," SEKE, p. pp. 7–12., 2015.

[34] C. Iacob and R. Harrison, "Retrieving and analyzing mobile apps feature

requests from online reviews", Proceedings of the 10th Working

Conference on Mining Software Repositories, p. pp. 41–44., 2013.

[35] C Chiu, RJ Sung, YR Chen, CH Hsiao, "App review analytics of free

games listed on google play", Proceedings of the 13th International

Conference on Electronic Business, Singapore, 2013.

[36] M Jarrar, F Zaraket, R Asia, H Amayreh, "Diacritic-based Matching of

Arabic Words", ACM Transactions on Asian and Low-Resource Language

Information Processing (TALLIP), 2018.

https://scholar.google.com/citations?user=GladWQwAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=YUrxwrkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zVlpAfQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=doBKoPm4uPYC&hl=en&oi=sra
https://scholar.google.com/citations?user=G8jxPg4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=_ThQt-4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zVlpAfQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=gFR72LsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cMs97_YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zVlpAfQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HiUpTkcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=1e2w_FoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=aAtDOTkAAAAJ&hl=en&oi=sra

95

[37] M Jarrar, H Amayreh, "An Arabic-Multilingual Database with a

Lexicographic Search Engine", 24th International Conference on

Applications of Natural Language to Information Systems (NLDB 2019),

vol. vol. 11608, pp. pp. 234-246, 2019.

[38] Mohammed et al., 2014 N.A. Mohammed, M.A. Izzat, H.G. Amal, A.W.

Heider, M.H. Mohamad, "Opinion Mining and Analysis for Arabic

Language", International Journal of Advanced Computer Science and

Applications, 2014.

[39] M Jarrar, N Habash, D Akra, N Zalmout, "Building a corpus for Palestinian

Arabic: a preliminary study. In Proceedings –Arabic Natural Language

Processing Workshop", Conference on Empirical Methods in Natural

Language Processing (EMNLP 2014), pp. (pp. 18-27), 2014.

[40] Jarrar, M., Habash, N., Alrimawi, F. et al., "Curras: an annotated corpus for

the Palestinian Arabic dialect", Language Resources and Evaluation, 2016.

[41] A Elnagar, YS Khalifa, A Einea, "Hotel Arabic-Reviews Dataset

Construction for Sentiment Analysis Application", Shaalan K., Hassanien

A., Tolba F. (eds) Intelligent Natural Language Processing: Trends and

Applications. Studies in Computational Intelligence, vol. vol 740, 2018.

[42] I. Hmeidi et al., "Automatic Arabic text categorization: A comprehensive

comparative study", Journal of Information Science, 41(1), pp. pp.114-124,

2015.

[43] S Areed, O Alqaryouti, B Siyam, K Shaalan, "Aspect-Based Sentiment

Analysis for Arabic Government Reviews", Abd Elaziz M., Al-qaness M.,

Ewees A., Dahou A. (eds) Recent Advances in NLP: The Case of Arabic

Language. Studies in Computational Intelligence, vol. vol 874., 2020.

[44] A Fuad, M Al-Yahya, "Analysis and Classification of Mobile Apps Using

Topic Modeling: A Case Study on Google Play Arabic Apps", Complexity,

vol. 2021, Article ID 6677413, 12 pages, 2021.

[45] arabert, "Araber github repository," github, 2020. [Online]. Available:

https://github.com/aub-mind/arabert.

[46] M Djandji, F Baly, W Antoun, H Hajj, "Multi-Task Learning using AraBert

for Offensive Language Detection", European Language Resource

Association, 2020.

[47] D Faraj, M Abdullah, "SarcasmDet at Sarcasm Detection Task 2021 in

Arabic using AraBERT Pretrained Model", Association for Computational

Linguistics, 2021.

https://scholar.google.com/citations?user=HiUpTkcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=aAtDOTkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HiUpTkcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=DGb-sBwAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=OtoYlNoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=XU9vJRQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4kd4j5oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=d-vz8QQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=bbejLFkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=keLKdlgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=W7Agq-8AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=ly-ZiXEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=o9PSdxEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4zLsisQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=fEgsyU4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=UnGTzOkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=93n4ZbEAAAAJ&hl=en&oi=sra

96

[48] IA Farha, W Zaghouani, W Magdy, "Overview of the wanlp 2021 shared

task on sarcasm and sentiment detection in arabic", In Proceedings of the

Sixth Arabic Natural Language Processing Workshop, 2021.

[49] A Hussein, N Ghneim, A Joukhadar, "DamascusTeam at NLP4IF2021:

Fighting the Arabic COVID-19 Infodemic on Twitter Using AraBERT",

Association for Computational Linguistics, 2021.

[50] Shaden Shaar, Firoj Alam, Giovanni Da San Martino, Alex Nikolov, Wajdi

Zaghouani, and Preslav Nakov, "Findings of the NLP4IF- 2021 Shared

Task on Fighting the COVID- 19 Infodemic and Censorship Detection", In

Proceedings of the Fourth Workshop on Natural Language Processing for

Internet Freedom: Censorship, Disinformation, and Propaganda, 2021.

[52] A. Wadhawan, "Dialect Identification in Nuanced Arabic Tweets Using

Farasa Segmentation and AraBERT," arXiv preprint arXiv:2102.09749.,

2021.

[52] AN Alsaleh, E Atwell, "Quranic Verses Semantic Relatedness Using

AraBERT", Proceedings of the Sixth Arabic Natural Language Processing

Workshop, 2021.

[53] W Antoun, F Baly, H Hajj, "Arabert: Transformer-based model for arabic

language understanding" arXiv preprint arXiv:2003.00104, 2020.

[54] K Darwish, H Mubarak, "Farasa: A New Fast and Accurate Arabic Word

Segmenter", European Language Resources Association (ELRA), 2016.

[55] pytorch. [Online]. Available:

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Lin

ear.

[56] pytorch, Pytorch, [Online]. Available:

https://pytorch.org/docs/stable/generated/torch.sigmoid.html.

[57] T. Boyle, Towardsdatascience, 2019. [Online]. Available:

https://towardsdatascience.com/methods-for-dealing-with-imbalanced-data-

5b761be45a18.

[58] S. Narkhede, "Understanding AUC - ROC Curve," towardsdatascience,

2018. [Online]. Available: https://towardsdatascience.com/understanding-

auc-roc-curve-68b2303cc9c5.

[59] Interaction Design Foundation, [Online]. Available:

https://www.interaction-design.org/literature/topics/user-centered-design.

[60] I. D. Foundation, "User Centered Design," Interaction Design Foundation,

[Online]. Available: https://www.interaction-

design.org/literature/topics/user-centered-design.

https://scholar.google.com/citations?user=UxGLZEsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Jayj_-cAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=ACQD8jMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=kXIvWvIAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=imIKME4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=5FcwVo4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Iu5WFskAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=fEgsyU4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4zLsisQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=UnGTzOkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=y7tlR6UAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=usvY6qYAAAAJ&hl=en&oi=sra

97

[61] U. C. Design, "User Centered Design," Interaction Design Foundation,

[Online]. Available: https://www.interaction-

design.org/literature/topics/user-centered-design.

	Declaration of Authorship
	Abstract

	ملخص
	جمع متطلبات البرمجيات عادة ما يتضمن إشراك مستخدمي هذه التطبيقات لأخذ تغذيتهم الراجعة ليتم تعديل وتطوير هذه التطبيقات بما يتناسب مع احتياجات مستخدميها. قديما، كان يتم جمع تغذية المستخدمين الراجعة من خلال إجراء مقابلات مع المستخدمين أو من خلال عقد حلقات...
	تعد متاجر التطبيقات أحد أشهر أنظمة جمع تغذية المستخدمين الراجعة لتطبيقات الهواتف الذكية، حيث يستطيع مستخدمو التطبيقات من خلال هذه المتاجر تقديم تغذيتهم الرجعة لمطوري التطبيق والمستخدمين الآخرين بعدة أشكال منها: تقييم التطبيق بعدد من النجوم، إبداء إعجا...
	وفي هذا البحث العلمي، أعتزم استخدام تقنيات الذكاء الصناعي وأنظمة الشبكات العصبونية المدربة لبناء أداة تقوم بتحليل الأعداد الهائلة من تغذية المستخدمين الراجعة النصية المكتوبة باللغة العربية بشكل آلي وتصنيفها إلى خمس فئات رئيسة: الأخطاء البرمجية، متطلبا...
	Acknowledgments

	List of Equations
	List of Abbreviations
	Chapter 1
	Introduction
	1.1 Introduction and Motivation
	1.2 Research objectives and Problem statement
	1.3 Research Overview
	1.4 Research Activities
	Chapter 2
	Background
	2.1 App distribution platform
	2.2 Software requirements and bugs
	2.2.1 User requirements:
	2.2.2 Nonfunctional requirements:
	2.2.3 Software bugs:
	2.3 Neural network:
	2.3.1 BERT
	2.4 Logistics regression:
	2.5 Warmup steps:
	2.6 Learning rate:
	2.7 Early stopping:
	2.8 AdamW:
	2.9 Sigmoid function:
	2.10 Colab:
	Chapter 3
	Related Work
	3.1 App platform reviews analysis
	3.2 Arabic language classification and analysis
	3.3 BERT and AraBERT
	Chapter 4
	Data collection and analysis
	4.1 Data collection
	4.2 Data manual classification and categorization
	Chapter 5
	Research Methodology And Experimental Setup
	5.1 Environment setup
	5.2 AraBERT
	5.3 Used tools
	5.4 Code explanation
	Chapter 6
	Experiments Results and Analysis
	6.1 Hyperparameter values
	6.2 Datasets and text preprocessing and Tokenization
	6.2.1 Splitting dataset and solve the unbalanced class issue
	6.2.2 Text preprocessing and tokenization
	6.3 Model training:
	6.4 Experiment I result
	6.4.1 AUROC per class
	6.4.2 Train vs validation loss
	6.4.3 Prediction
	6.4.4 Experiment result
	6.5 Experiment II result
	6.5.1 AUROC per class
	6.5.2 Train vs validation loss
	6.5.3 Prediction
	6.5.4 Experiment result
	6.6 Experiment III result
	6.6.1 AUROC per class
	6.6.2 Train vs validation loss
	6.6.3 Prediction
	6.6.4 Experiment Results
	Chapter 7
	Conclusion
	7.1 Conclusions
	7.2 Future work

	Appendix A
	 Dataset:
	 Colab Experiments:

	References

